Fluorescence-enhanced diffuse optical tomography is expected to be useful to the collection of functional information from small animal models. This technique is currently limited by the extent of tissue heterogeneity and management of the shape of the animals. We propose an approach based on the reconstruction of object heterogeneity, which provides an original solution to the two problems. Three evaluation campaigns are described: the first two were performed on phantoms designed to test the reconstructions in highly heterogeneous media and noncontact geometries; the third was conducted on mice with lung tumors to test fluorescence yield reconstruction feasibility in vivo.
We present in vivo experiments conducted with a new fluorescence diffuse optical tomographic (fDOT) system on cancerous mice bearing mammary murine tumors. We first briefly present this new system that has been developed and its associated reconstruction method. Its main specificity is its ability to reconstruct the fluorescence yield even in heterogeneous and highly attenuating body regions such as lungs and to enable mouse inspection without immersion in optical index matching liquid (Intralipid and ink). Some phantom experiments validate the performance of this new system for heterogeneous media inspection. Its use for a mice study is then related. It consists in the follow-up of the lungs at different stages of tumor development after injection of RAFT-(cRGD)4-Alexa700. As expected, the reconstructed fluorescence increases along with the tumor stage. These results validate the use of our system for biological studies of small animals.
A small-animal multimodality tomography system dedicated to the coregistration of fluorescence optical signal and x-ray measurements has been developed in our laboratory. The purpose of such a system is to offer the possibility of getting in vivo anatomical and functional information simultaneously. Moreover, anatomical measurements can be used as a regularization factor to achieve more accurate reconstructions of the biodistribution of fluorochromes and to speed up treatment. A dedicated acquisition protocol has been established, and the methodology of the reconstruction of the three-dimensional distribution of the biomarkers under cylindrical geometry consistent with classic computed tomography has been implemented. A phantom study was conducted to evaluate and to fix the parameters for the coregistration. These test experiments were reproduced by considering anesthetized mice that had thin glass tubes containing fluorochromes inserted into their esophagus. The instrument is also used for an in vivo biological study conducted on mice with lung tumors, tagged with near-infrared optical probes (targeting probes such as Transferin-AlexaFluor750).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.