Resident memory T cells (TRM cells) are an important first-line defense against respiratory pathogens, but the unique contributions of lung TRM cell populations to protective immunity and the factors that govern their localization to different compartments of the lung are not well understood. Here, we show that airway and interstitial TRM cells have distinct effector functions and that CXCR6 controls the partitioning of TRM cells within the lung by recruiting CD8 TRM cells to the airways. The absence of CXCR6 significantly decreases airway CD8 TRM cells due to altered trafficking of CXCR6−/− cells within the lung, and not decreased survival in the airways. CXCL16, the ligand for CXCR6, is localized primarily at the respiratory epithelium, and mice lacking CXCL16 also had decreased CD8 TRM cells in the airways. Finally, blocking CXCL16 inhibited the steady-state maintenance of airway TRM cells. Thus, the CXCR6/CXCL16 signaling axis controls the localization of TRM cells to different compartments of the lung and maintains airway TRM cells.
α4β7 integrin expressing CD4+ T cells preferentially traffic to gut-associated lymphoid tissues (GALT) and play a key role in HIV/SIV pathogenesis. The administration of an anti-α4β7 monoclonal antibody during acute infection protects macaques from transmission following repeated low-dose intra-vaginal challenges with SIVmac251. In treated animals that became infected the GALT was significantly protected and CD4+ T–cell numbers were maintained. Thus, targeting α4β7 reduces mucosal transmission of SIV in macaques.
Cytotoxic T lymphocytes (CTLs) play an important role in controlling viral infections and certain tumours, but characterising specific CTL responses has always been technically limited. Fluorogenic 'tetramers' of major histocompatibility complex (MHC) class I complexes have been exploited recently to quantify the massive expansion of specific CTLs in human immunodeficiency virus (HIV) infection [1]. Here, we use MHC class I complex tetramers to isolate low-frequency antigen-specific CTLs directly from human peripheral blood, allowing the simultaneous phenotypic and functional characterisation and cloning of these CTLs. We synthesised a tetramer that specifically stained human leukocyte antigen (HLA)-A2. 1-restricted CTL clones recognising the influenza matrix protein peptide 58-66, matrix 58-66 [2]. This tetramer stained between 1 in 1,500 and 1 in 58,000 peripheral blood mononuclear cells (PBMCs) from HLA-A2.1+ individuals. The surface phenotype of these cells could be analysed by fluorescence-activated cell sorting (FACS), and the cells could be directly sorted into enzyme-linked immunospot (ELISpot) plates, where they released interferon-gamma (IFN-gamma) within 1 day of antigen exposure. The same population was cloned by FACS, and the specificity of several expanded clones was confirmed. Cloning was greatly simplified and accelerated compared with standard protocols, and was highly efficient. We also used tetramer-based sorting to enrich melanoma-specific CTLs derived from a tumour-infiltrated lymph node. Direct cloning of specific CTLs from peripheral blood can provide important information about immunological memory, CTL responses against tumour antigens and CTL proliferation and function, and opens up new possibilities for generating CTLs for adoptive immunotherapy.
Expression of NY-ESO-1 in a high proportion of different human tumors makes this protein a very attractive vaccine target. NY-ESO-1 peptides, recognized by HLA-A2-restricted CTL, have recently been described. However, it remains unclear how efficiently tumors generate these epitopes, and whether peptide analogues can be used for optimal expansion and activation of NY-ESO-1-specific HLA-A2-restricted CTL. By generating unique CTL clones, we demonstrate that NY-ESO-1-positive tumor cells are efficiently killed by HLA-A2-restricted CTL specific for the peptide epitope NY-ESO-1 157–165. Presentation of this epitope is not affected by the presence or absence of the proteasome subunits low molecular proteins 2 and 7 and is not blocked by proteasome inhibitors, while it is impaired in the TAP-deficient cell line LBL 721.174. NY-ESO-1 157–165 peptide analogues were compared for their antigenicity and immunogenicity using PBL from melanoma patients. Three peptides, containing the carboxyl-terminal cysteine substituted for either valine, isoleucine, or leucine, were recognized at least 100 times more efficiently than the wild-type peptide by specific CTL. Peptide analogues were capable of stimulating the expansion of NY-ESO-1-specific CTL from PBL of melanoma patients much more efficiently than wild-type peptide. These findings define the processing requirements for the generation of the NY-ESO-1 157–165 epitope. Identification of highly antigenic NY-ESO-1 peptide analogues may be important for the development of vaccines capable of expanding NY-ESO-1-specific CTL in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.