Abstrucf-We propose a new scheme for content dktribution of large files that is based on network coding. With network coding, each node o f the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of block propagation, and, thus, makes the distribution more efficient. This is particularly important in large unstructured overlay networks, where the nodes need to make block forwarding decisions based on local information only. We compare network coding to other schemes that transmit unencoded information (i.e. blocks of the original file) and, also, to schemes in which only the source is allowed to generate and transmit encoded packets.We study the performance of network coding in heterogeneous networks with dynamic node arrival and departure patterns, clustered topologies, and when incentive mechanisms to discourage free-riding are in plece. We demonstrate through simulations of scenarios of practical interest that the expected file download time improves by more than 20-30470 with network coding compared to coding at the server only and, by more than 2-3 times compared to sending unencoded information. Moreover, we show that network coding improves the robustness of the system and is able to smoothly handle extreme situations where the server and nodes leave the system.
Peer-to-peer content distribution networks can suffer from malicious participants that corrupt content. Current systems verify blocks with traditional cryptographic signatures and hashes. However, these techniques do not apply well to more elegant schemes that use network coding techniques for efficient content distribution.Architectures that use network coding are prone to jamming attacks where the introduction of a few corrupted blocks can quickly result in a large number of bad blocks propagating through the system. Identifying such bogus blocks is difficult and requires the use of homomorphic hashing functions, which are computationally expensive. This paper presents a practical security scheme for network coding that reduces the cost of verifying blocks on-the-fly while efficiently preventing the propagation of malicious blocks. In our scheme, users not only cooperate to distribute the content, but (well-behaved) users also cooperate to protect themselves against malicious users by informing affected nodes when a malicious block is found. We analyze and study such cooperative security scheme and introduce elegant techniques to prevent DoS attacks. We show that the loss in the efficiency caused by the attackers is limited to the effort the attackers put to corrupt the communication, which is a natural lower bound in the damage of the system. We also show experimentally that checking as low as 1-5% of the received blocks is enough to guarantee low corruption rates.
For half a century, television has been a dominant and pervasive mass media, driving many technological advances. Despite its widespread usage and importance to emerging applications, the ingrained TV viewing habits are not completely understood. This was primarily due to the difficulty of instrumenting monitoring devices at individual homes at a large scale. The recent boom of Internet TV (IPTV) has enabled us to monitor the user behavior and network usage of an entire network. Such analysis can provide a clearer picture of how people watch TV and how the underlying networks and systems can better adapt to future challenges. In this paper, we present the first analysis of IPTV workloads based on network traces from one of the world's largest IPTV systems. Our dataset captures the channel change activities of 250,000 households over a six month period. We characterize the properties of viewing sessions, channel popularity dynamics, geographical locality, and channel switching behaviors. We discuss implications of our findings on networks and systems, including the support needed for fast channel changes. Our data analysis of an operational IPTV system has important implications on not only existing and future IPTV systems, but also the design of the open Internet TV distribution systems such as Joost and BBC's iPlayer that distribute television on the wider Internet.
The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units:(1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working to develop models for interpreting analog processes on Mars during the mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.