We study the singlet-triplet Anderson model (STAM) in which a configuration with a doublet is hybridized with another containing a singlet and a triplet, as a minimal model to describe two-level quantum dots coupled to two metallic leads in effectively a one-channel fashion. The model has a quantum phase transition which separates regions of a doublet and a singlet ground state. The limits of integer valence of the STAM (which include a model similar to the underscreened spin-1 Kondo model) are derived and used to predict the behavior of the conductance through the system on both sides of the transition, where it jumps abruptly. At a special quantum critical line, the STAM can be mapped to an infinite- U ordinary Anderson model (OAM) plus a free spin 1/2. We use this mapping to obtain the spectral densities of the STAM as a function of those of the OAM at the transition. Using the non-crossing approximation (NCA), we calculate the spectral densities and conductance through the system as a function of temperature and bias voltage, and determine the changes that take place at the quantum phase transition. The separation of the spectral density into a singlet and a triplet part allows us to shed light on the underlying physics and to explain a shoulder observed recently in the zero bias conductance as a function of temperature in transport measurements through a single fullerene molecule (Roch et al 2008 Nature 453 633). The structure with three peaks observed in nonequilibrium transport in these experiments is also explained.
PACS 73.23.-b -Electronic transport in mesoscopic systems PACS 72.15.Qm -Scattering mechanisms and Kondo effectAbstract -We analyze the electronic transport through a model spin-1 molecule as a function of temperature, magnetic field and bias voltage. We consider the effect of magnetic anisotropy, which can be generated experimentally by stretching the molecule. In the experimentally relevant regime the conductance of the unstretched molecule reaches the unitary limit of the underscreened spin-1 Kondo effect at low temperatures. The magnetic anisotropy generates an antiferromagnetic coupling between the remaining spin 1/2 and a singular density of quasiparticles, producing a second Kondo effect and a reduced conductance. The results explain recent measurements in spin-1 molecules [Science 328 1370 (2010)].
We study the Anderson model in which a configuration with a doublet is hybridized with another with a singlet and a triplet. We calculate the conductance through the system as a function of temperature and bias voltage near the quantum critical line for which the system is exactly solvable. The results explain recent transport measurements in a single-molecule quantum dot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.