IntroductionThe advent of anti-tumor necrosis factor alpha (anti-TNFα) drugs has considerably improved medical management in rheumatoid arthritis (RA) patients, although it has been reported to be ineffective in a fraction of them. MicroRNAs (miRNAs) are small, non-coding RNAs that act as fine-tuning regulators of gene expression. Targeting miRNAs by gain or loss of function approaches have brought therapeutic effects in various disease models. The aim of this study was to investigate serum miRNA levels as predictive biomarkers of response to anti-TNFα therapy in RA patients.MethodsIn total, 95 RA patients undergoing anti-TNFα/disease-modifying antirheumatic drugs (anti-TNFα/DMARDs) combined treatments were enrolled. Serum samples were obtained at 0 and 6 months and therapeutic efficacy was assessed. miRNAs were isolated from the serum of 10 patients before and after anti-TNFα/DMARDs combination therapy, cDNA transcribed and pooled, and human serum miRNA polymerase chain reaction (PCR) arrays were performed. Subsequently, selected miRNAs were analyzed in a validation cohort consisting of 85 RA patients. Correlation studies with clinical and serological variables were also performed.ResultsNinety percent of RA patients responded to anti-TNFα/DMARDs combination therapy according to European League Against Rheumatism (EULAR) criteria. Array analysis showed that 91% of miRNAS were overexpressed and 9% downregulated after therapy. Functional classification revealed a preponderance of target mRNAs involved in reduction of cells maturation - especially on chondrocytes - as well as in immune and inflammatory response, cardiovascular disease, connective tissue and musculoskeletal system. Six out of ten miRNAs selected for validation were found significantly upregulated by anti-TNFα/DMARDs combination therapy (miR-16-5p, miR-23-3p, miR125b-5p, miR-126-3p, miRN-146a-5p, miR-223-3p). Only responder patients showed an increase in those miRNAs after therapy, and paralleled the reduction of TNFα, interleukin (IL)-6, IL-17, rheumatoid factor (RF), and C-reactive protein (CRP). Correlation studies demonstrated associations between validated miRNAs and clinical and inflammatory parameters. Further, we identified a specific plasma miRNA signature (miR-23 and miR-223) that may serve both as predictor and biomarker of response to anti-TNFα/DMARDs combination therapy.ConclusionsmiRNA levels in the serum of RA patients before and after anti-TNFα/DMARDs combination therapy are potential novel biomarkers for predicting and monitoring therapy outcome.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-015-0555-z) contains supplementary material, which is available to authorized users.
Purpose To examine the prevalence of isolated IgA anti-β2Glycoprotein I (anti-β2GPI) positivity and the association of these antibodies, and a subgroup that bind specifically to domain IV/V of β2GPI, with clinical manifestations of the Antiphospholipid Syndrome (APS) in three patients groups. The pathogenicity of IgA anti-β2GPI was also evaluated in a mouse model of thrombosis. Methods Patients with systemic lupus erythematosus (SLE) from a multiethnic, multicenter cohort (LUpus in MInorities, NAture versus nurture [LUMINA]) (n=558), patients with SLE from the Hopkins Lupus Cohort (n=215), and serum samples referred to the Antiphospholipid Standardization Laboratory (APLS) (n=5,098) were evaluated. IgA anti-β2GPI titers and binding to domain IV/V of β2GPI were examined by enzyme-linked immunosorbent assay (ELISA). CD1 mice were inoculated with purified IgA anti- β2GPI antibodies, and surgical procedures and ELISAs were performed to evaluate thrombus development and tissue factor (TF) activity. Results A total of 198 patients were found to be positive for IgA anti-β2GPI isotype, and 57 patients were positive exclusively for IgA anti-β2GPI antibodies. Of these, 13 of 23 patients (56.5%) in the LUMINA cohort, 17 of 17 patients (100%) in the Hopkins cohort, and 10 of 17 patients (58.9%) referred to APLS had at least one APS-related clinical manifestation. Fifty-four percent of all the IgA anti-β2GPI positive serum samples reacted with domain IV/V of anti-β2GPI, and 77% of those had clinical features of APS. Isolated IgA anti-β2GPI positivity was associated with an increased risk for arterial thrombosis (p<0.001), venous thrombosis (p=0.015) and all thrombosis (p<0.001). The association between isolated IgA anti-β2GPI and arterial thrombosis (p=0.0003) and all thrombosis (p=0.0003) remained significant after adjusting for other risk factors for thrombosis. In vivo mouse studies demonstrated that IgA anti-β2GPI antibodies induced significantly larger thrombi and higher TF levels compared to controls. Conclusion Isolated IgA anti-β2GPI positive titers may identify additional patients with clinical features of APS. Testing for these antibodies when other antiphospholipid (aPL) tests are negative and APS is suspected is recommended. IgA anti-β2GPI antibodies directed to domain IV/V of β2GPI represent an important subgroup of clinically relevant antiphospholipids.
The exact mechanisms underlying the role of oxidative stress in the pathogenesis and the prothrombotic or proinflammatory status of antiphospholipid syndrome (APS) remain unknown. Here, we investigate the role of oxidative stress and mitochondrial dysfunction in the proatherothrombotic status of APS patients induced by IgG-antiphospholipid antibodies and the beneficial effects of supplementing cells with coenzyme Q 10 (CoQ 10 ). A significant increase in relevant prothrombotic and inflammatory parameters in 43 APS patients was found compared with 38 healthy donors. Increased peroxide production, nuclear abundance of Nrf2, antioxidant enzymatic activity, decreased intracellular glutathione, and altered mitochondrial membrane potential were found in monocytes and neutrophils from APS patients. Accelerated atherosclerosis in APS patients was found associated with their inflammatory or oxidative status. CoQ 10 preincubation of healthy monocytes before IgG-antiphospholipid antibody treatment decreased oxidative stress, the percentage of cells with altered mitochondrial membrane potential, and the induced expression of tissue factor, VEGF, and Flt1. In addition, CoQ 10 significantly improved the ultrastructural preservation of mitochondria and prevented IgG-APS-induced fission mediated by Drp-1 and Fis-1 proteins. In conclusion, the oxidative perturbation in APS patient leukocytes, which is directly related to an inflammatory and proatherothrombotic status, relies on alterations in mitochondrial dynamics and metabolism that may be prevented, reverted, or both by treatment with CoQ 10 .
Gene expression profiling allows the segregation of APS, APS plus SLE and SLE, with specific signatures explaining the pro-atherosclerotic and pro-thrombotic alterations in these highly related autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.