SUMMARY
Intrinsic permeability to air of macropore space (ka) is related to macroporosity (ɛ) and organization of macropore space (O). Organization is defined as ka/ɛ. The use of ka for estimating saturated hydraulic conductivity (Ka) is also considered. The relationship between Log (O) and ɛ (Oɛ characteristic) can be used to describe changes to the macropore space of clay soils by amelioration and compaction. The effects of dominant macropore shape can also be identified and calculated as an empirical index of the efficiency of the pore organization E (E=log (O)/ɛ). Intrinsic permeability can then be related to E in a E:ka characteristic. Intrinsic permeability is the parameter most sensitive to structural change and E is mainly influenced by the dominant shapes of the macropores. Thus, the E:ka characteristic is suggested as a basis for studying differences in macropore space as may occur in response to external and internal stresses upon the soil and different systems of soil management, for example increases of packing pores by cultivation or of fissures by gypsum application and loss of packing pores by compaction. Empirical data indicate that Ks of the B horizons of Australian red‐brown earths can be estimated from ka of macropore space at a standard potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.