Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. The main advantage of having a material that degrades is so that an implant would not necessitate a second surgical event for removal. In addition, the biodegradation may offer other advantages. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P(2)O(5)-40CaO-5Na(2)O-5Fe(2)O(3) (nontreated and heat-treated) were used to reinforce the biodegradable polymer, PLA. Fiber properties were investigated, along with the mechanical and degradation properties and cytocompatibility of the composites produced. Retention of mechanical properties overtime was also evaluated. The mean fiber strength for the phosphate glass fibers was 456 MPa with a modulus value of 51.5 GPa. Weibull analysis revealed a shape and scale parameter value of 3.37 and 508, respectively. The flexural strength of the composites matched that for cortical bone; however, the modulus values were lower than those required for cortical bone. After 6 weeks of degradation in deionized water, 50% of the strength values obtained was maintained. The composite degradation properties revealed a 14% mass loss for the nontreated and a 10% mass loss for the heat-treated fiber composites. It was also seen that by heat-treating the fibers, chemical and physical degradation occurred much slower. The pH profiles also revealed that nontreated fibers degraded quicker, thus correlating well with the degradation profiles. The in vitro cell culture experiments revealed both PLA (alone) and the heat-treated fiber composites maintained higher cell viability as compared to the nontreated fiber composites. This was attributed to the slower degradation release profiles of the heat-treated composites as compared to the nontreated fiber composites. SEM analyses revealed a porous structure after degradation, and it is clear that there are possibilities here to tailor the distribution of porosity within polymer matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.