Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
Nutrient conservation plays an important role in plants adapted to infertile environments. Nutrients can be conserved mainly by extending the life span of plant parts and\or by minimizing the nutrient content of those parts that are abscissed. Together these two parameters (life span and resorption) define the mean residence time (MRT ) of a nutrient. In this review we summarize available information on nitrogen resorption and life span, and evaluate their relationship to the MRT of nitrogen, both between and within species. Abundant information with respect to nitrogen resorption efficiency and life span is available at the leaf level. By definition, woody evergreen plants have a much longer leaf life span than species of other life-forms. Conversely, differences in resorption efficiency among life-forms or among plants in habitats differing in soil fertility appear to be small. Inter-specific variation in leaf life span is much larger than intra-specific variation (factor of 200 compared with 2, respectively), while resorption efficiency varies by about the same magnitude at both levels (factor of 3.8 compared with 2.7, respectively). The importance of resorption efficiency in determining leaf-level MRT increases exponentially towards and above the maximum resorption efficiency observed in nature. This effect is independent of leaf life span, which may explain the lack of life-form related differences in resorption efficiency. When scaling up from the leaf to the whole-plant level, fundamental differences in turnover rate among different plant organs must be considered. Woody species invest c. 50% of their net productivity into their low-turnover stems, while in herbaceous species the life span of stems is only slightly longer than that of leaves. As a result, nutrient turnover of woody (evergreen and deciduous) plants is generally lower than that of herbaceous species (herbs and graminoids) on a whole-plant basis. At the intra-specific level empirical data show that both biomass life span (i.e. the inverse of biomass loss rate) and resorption efficiency are important sources of variation in MRT. However, we argue that the relative importance of resorption efficiency in explaining variation in MRT is lower at the interspecific level, whereas the reverse is true for life span. This is because variation in MRT and life span is much larger at the inter-specific level compared with variation in resorption efficiency. Plant traits related to nutrient conservation are discussed with respect to their implications for leaf structure, plant growth, competition, succession and ecosystem nutrient cycling.
Summary• Growth and nitrogen (N) economy of mountain birch are reported here in response to temperature change. Mechanisms of temperature effects on plant growth in temperate -arctic regions are discussed in the light of decreasing growth rates and increasing leaf-N contents along altitudinal and latitudinal temperature gradients.• Mountain birch ( Betula pubescens ssp. czerepanovii) seedlings were grown at two soil temperatures, air temperatures and nutrient concentrations in a full-factorial experiment during one growing season in northern Sweden.• Changes in air and soil temperature affected aboveground growth more than belowground growth. An increase in air temperature increased leaf area ratio and plant-N productivity while decreasing plant-N concentration and leaf-N content. A change in soil temperature affected root-N uptake rate and plant-N concentration, similar to the effect of a change in nutrient supply. Air and soil temperature had interactive effects on growth rate, N productivity and leaf-N content.• The results indicate that increasing leaf-N content with increasing altitude and latitude is not only a passive consequence of weaker N dilution by reduced growth, but also a physiological acclimation to lower air temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.