Thyroplasty surgery challenges both anaesthetic and ear, nose and throat (ENT) practice; ideal surgical conditions demand intra-operative vocal cord assessment of the phonating patient.The activity of the thyro-arytenoid muscle is mimicked by placing an implant lateral to the defective vocal cord to medialise the mid-membranous vocal cord. The awake patient method has the advantage of providing visual confirmation of vocal cord closure and immediate assessment of voice quality.We describe the provision of these surgical conditions during revision thyroplasty in a sedated spontaneously breathing, ASA physical status 3 patient with central obesity using a continuous infusion of remifentanil, dexmedetomidine and propofol. In our routine practice we limit depth of sedation to minimise patient disorientation and airway compromise. This newer combined sedation technique proved to be mutually beneficial from both anaesthetic and surgical perspectives.We further propose a novel technique for maintaining ideal airway conditions for thyroplasty surgery using THRIVE (Transnasal Humidified Rapid-Insufflation Ventilatory Exchange) high flow nasal oxygen.
Missile is a self-propelled vehicle flying at supersonic speeds. Their payloads are usually explosive and are also known as warheads. These warheads are used to destroy a pre-set target. The aim of this paper is to optimize the values of the lift and drag forces on the given missile for better aerodynamic performance, by carrying out numerical simulations over the supersonic missile by varying the angle of attack through a set of suitable boundary conditions, while keeping the Mach number of the missile as a fixed parameter. Aerodynamic performance of the missile is studied by varying the angle of attack from 0 to 12 degrees. For every angle of attack, the coefficient of lift and coefficient of drag variations were studied in detail and were compared with the existing literature survey so as to obtain the maximum value of C L /C D ratio in order to improve the efficiency. A model of the missile was designed to-scale on Space Claim and the flow analysis was done on FLUENT standalone system using ANSYS 16 workbench. The results obtained, were in the form of flow contours of parameters such as velocity, temperature, density, pressure and turbulence. Through these flow contours the maximum and minimum values of all parameters, as well as the variation in these parameters were estimated. From the numerical analysis it was found that maximum value of C L /C D ratio was 2.5 at 12 o angle of attack. It was also found that the velocity increased with increase in angle of attack and increased the efficiency. These results are advantageous upcoming to designers who aim to build aerodynamically efficient missiles.
Wind turbines are one of the most prominent and popular sources of renewable energy, of which, horizontal axis wind turbines (HAWT) are the majorly chosen design for wind machines. These turbines rotate about the horizontal axis which is parallel to the ground. They comprise of aerodynamic blades (generated from the desired airfoil), that may be twisted or tapered as per the design requirements. The blades are attached to a rotor which is located either upwind or downwind. To help wind the orientation of the turbines, the upwind rotors have a tail vane, while the downwind rotors are coned which in turn help them to self-orient. One of the major reasons for the popularity of the horizontal wind turbine, is its ability to generate a larger amount of electricity for a given amount of wind. Due to its popularity, the enhancement in the design of HAWTs, is a major focus area for research. In the present study, a scaled-down CFD model of the NREL Phase VI was validated against the numerical and experimental data. The model used had a dual blade rotor and applied the S809 airfoil. The simulations were carried out using a rotating mesh in ANSYS Fluent. Validation was carried out for 3 velocities — 7m/s, 10m/s and 20m/s. Once validation was carried out, turbine was modified with the addition of vortex generators, in the form of cylindrical protrusions that reduce flow separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.