Multiple fields in IMRT and optimization allow conformal dose to the target and reduced dose to the surroundings and the regions of interest. Thus we can escalate the dose to the target to achieve better tumor control with low morbidity. Orientation of multiple beams can be achieved by i) different gantry angles, ii) rotating patient's couch isocentrically. In doing so, one or more beam may pass through different materials like the treatment couch, immobilization cast fixation plate, head and neck rest or any other supportive device. Our observations for 6MV photon beam on PRIMUS-KXE2 with MED-TEC carbon fiber tabletop and 10 × 10 cm2 field size reveals that the maximum dose attenuation by the couch was of the order of 2.96% from gantry angle 120-160°. Attenuation due to cast fixation base plate of PMMA alone was of the order of 5.8-10.55% at gantry angle between 0 and 90°. Attenuation due to carbon fiber base plate alone was 3.8-7.98%. Attenuation coefficient of carbon fiber and PMMA was evaluated and was of the order of 0.082 cm−1 and 0.064 cm−1 respectively. Most of the TPS are configured for direct beam incidence attenuation correction factors only. Whereas when the beam is obliquely incident on the couch, base plate, headrest and any other immobilization device get attenuated more than the direct beam incidence. The correction factors for oblique incidence beam attenuation are not configured in most of the commercially available treatment planning systems. Therefore, such high variations in dose delivery could lead to under-dosage to the target volume for treatments requiring multiple fields in IMRT and 3D-CRT and need to be corrected for monitor unit calculations.
Medical electron linear accelerators with the capability of generating unflat photon (flattening filter-free, FFF) beams are also available commercially for clinical applications in radiotherapy. However, the beam characteristics evaluation criteria and parameters are not yet available for such photon beams. Atomic Energy Regulatory Board (AERB) of India constituted a Task Group comprising experts from regulatory agency, advisory body/research and technical institutions, and clinical radiotherapy centers in the country to evolve and recommend the acceptance criteria for the flattening filter-free (FFF) photon beams. The Task Group thoroughly reviewed the literature and inputs of the manufactures/suppliers of the FFF linac and recommended a set of dosimetry parameters for evaluating the characteristics of the unflat photon beam. The recommendations included the evaluation of quality index, degree of unflatness, difference in percentage surface dose between flat and unflat photon beams, percentage depth dose at 10 cm depth, off-axis-ratios and radiation beam penumbra. The recommended parameters were evaluated for FFF photon beams generated by three different models of the linac, and it was observed that recommended evaluation methods are simple and easy to be implemented with the existing dosimetry and quality assurance infrastructure of the linac facilities of the radiotherapy departments. Recommendations were also made for periodic quality control check of the unflat photon beams and constancy evaluation in the beam characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.