Introduction Substance abuse is a common problem among HIV-infected individuals. Importantly, addictions as well as moderate use of alcohol, smoking, or other illicit drugs have been identified as major reasons for non-adherence to antiretroviral therapy (ART) among HIV patients. The literature also suggests a decrease in the response to ART among HIV patients who use these substances, leading to failure to achieve optimal virological response and increased disease progression. Areas covered This review discusses the challenges with adherence to ART as well as observed drug interactions and known toxicities with major drugs of abuse, such as alcohol, smoking, methamphetamine, cocaine, marijuana, and opioids. The lack of adherence and drug interactions potentially lead to decreased efficacy of ART drugs and increased ART, and drugs of abuse-mediated toxicity. As CYP is the common pathway in metabolizing both ART and drugs of abuse, we discuss the possible involvement of CYP pathways in such drug interactions. Expert opinion We acknowledge that further studies focusing on common metabolic pathways involving CYP and advance research in this area would help to potentially develop novel/alternate interventions and drug dose/regimen adjustments to improve medication outcomes in HIV patients who consume drugs of abuse.
Mild-to-moderate tobacco smoking is highly prevalent in HIV-infected individuals, and is known to exacerbate HIV pathogenesis. The objective of this study was to determine the specific effects of mild-to-moderate smoking on viral load, cytokine production, and oxidative stress and cytochrome P450 (CYP) pathways in HIV-infected individuals who have not yet received antiretroviral therapy (ART). Thirty-two human subjects were recruited and assigned to four different cohorts as follows: a) HIV negative non-smokers, b) HIV positive non-smokers, c) HIV negative mild-to-moderate smokers, and d) HIV positive mild-to-moderate smokers. Patients were recruited in Cameroon, Africa using strict selection criteria to exclude patients not yet eligible for ART and not receiving conventional or traditional medications. Those with active tuberculosis, hepatitis B or with a history of substance abuse were also excluded. Our results showed an increase in the viral load in the plasma of HIV positive patients who were mild-to-moderate smokers compared to individuals who did not smoke. Furthermore, although we did not observe significant changes in the levels of most pro-inflammatory cytokines, the cytokine IL-8 and MCP-1 showed a significant decrease in the plasma of HIV-infected patients and smokers compared with HIV negative non-smokers. Importantly, HIV-infected individuals and smokers showed a significant increase in oxidative stress compared with HIV negative non-smoker subjects in both plasma and monocytes. To examine the possible pathways involved in increased oxidative stress and viral load, we determined the mRNA levels of several antioxidant and cytochrome P450 enzymes in monocytes. The results showed that the levels of most antioxidants are unaltered, suggesting their inability to counter oxidative stress. While CYP2A6 was induced in smokers, CYP3A4 was induced in HIV and HIV positive smokers compared with HIV negative non-smokers. Overall, the findings suggest a possible association of oxidative stress and perhaps CYP pathway with smoking-mediated increased viral load in HIV positive individuals.
While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC-treated cells of myeloid lineage. This study warrants a closer examination of the role of CYP1B1 in smoking-mediated enhanced HIV replication.
Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol's effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence.
Rationale Several studies have demonstrated a correlation between extracellular glutamate concentration in the mesolimbic reward pathway and alcohol craving. Extracellular glutamate concentration is regulated by several glutamate transporters. Glial glutamate transporter 1 (GLT1) is one of them that regulates the majority of extracellular glutamate concentration. In addition cystine/glutamate antiporter (xCT) is another transporter that regulates extracellular glutamate. Objectives We focus in this study to determine the effects of ceftriaxone, β-lactam antibiotic, on glial proteins such as GLT1 isoforms, xCT, GLAST and several associated signaling pathways as well as ethanol intake in P rats. Additionally, to examine the onset of signaling pathways associated with GLT1 upregulation following ceftriaxone treatment, we tested two-day versus five-day daily dosing of ceftriaxone. Results Ceftriaxone treatment (100 mg/kg), two-day and five day, resulted in about five-fold reduction in ethanol intake by P rats. The reduction in ethanol intake was associated with significantly enhanced expression of GLT1, GLT1a, GLT1b, and xCT in the NAc and PFC of five-day ceftriaxone treated P rats. Two-day treated P rats showed marked changes in expression of these glutamate transporters in the PFC but not in the NAc. Importantly, ceftriaxone treated P rats (two-day and five-day) demonstrated enhanced phosphorylation of Akt and nuclear translocation of NFκB in the NAc and PFC compared to control animals. Conclusions These findings demonstrate that ceftriaxone treatment induced upregulation of GLT1, GLT1 isoforms, and xCT in association with activation of Akt-NFκB signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.