With both the ecological and economical aspect of fossil fuels as a source of energy, the demand for renewable sources is rising. This paper aims to analyse two scenarios, which would benefit from the use of a photovoltaic system. In the first scenario, a strategically important warehouse is analysed, and a photovoltaic system is designed and simulated. In the second scenario, two designs of photovoltaic systems that could be used in mobile applications by first responders, military command centres, or during natural disasters are proposed. The results of the simulations are discussed and may serve as a basis for real-life system design and application.
Critical operating temperature can be determined for the machine components that form the key functional part of the device. This article describes a change of the failure mechanism in the material of an engine, where the material structure consists of fine pearlite layers with lamellar graphite equivalent to grey cast iron. The mechanical properties of this material influence not only the layers formed by the perlite, but also the lamellar graphite acting as a stress concentrator. To assess the failure mechanism in the material, a fractographic analysis of the fracture areas was performed after the impact test. The range of test temperatures at which the impact test was performed on the test specimens with notch ranged from -80°C to +180°C. The occurrence of brittle fracture was detected at the low temperatures by cleavage along and over the planar layers of the lamellar graphite. The brittle fracture initiation at the higher temperatures was observed by cleavage in the basic layer of the perlite. Depending on the failure mechanism of the test specimens fracture area, critical temperatures were determined, in which the measured value of the notch toughness decreased. Regression of temperature dependence of notch toughness allows very precise quantification of this decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.