The scalabilty of the titanium self-aligned silicide (Salicide) process is one of the main issues for sub-quarter micron technologies. The major difficulty is to achieve a low sheet resistance for very narrow polysilicon lines and highly doped S/D regions, without degrading the transistor performance. A preamorphization implant (PAl) performed before the titanium deposition, can achieve a low Ti silicide sheet resistance (<10 Ohms/sq) down to 0.1 Vim gate lengths [1]. Nevertheless, it has been recently reported that PAI should not be sufficient to achieve low silicide sheet resistance for narrower gate widths (< 0.1 µm) [2]. In this work, an extension of the PAI process down to 0.065µm poly-Si lines width, by only using an arsenic implant is presented, achieving a very low sheet resistance value (∼5 Ohms/sq). This result has been obtained by optimizing both the arsenic implant conditions and the silicon surface cleaning. Moreover, a large statistical analysis of the arsenic PAI process impact on 0.25µm device performances has been done, showing that a defectivity of the NMOS Ioff leakage current can appear if preamorphization implant conditions are not optimized.
A new failure mechanism was studied on high density and high performances 0.25µm SRAM memories. A local anomalous polysilicon grain growth, promoted by a Phosphorus gate predoped implantation, induced a modification of dopant diffusion into N-doped transistor gate. This local variation of small transistor threshold voltage, was responsible for a severe yield loss in large SRAM memory array. This phenomenon was both related to gate material properties and gate predoped implantation conditions. This paper presents a complete characterization of this new failure mechanism, based on physical and electrical measurements. Finally, main results of process experiments, performed to solve the problem, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.