Marine pollution is a major environmental hazard and a serious healthcare, economic, and social issue. Machine learning (ML) and deep learning (DL) techniques can be used to automate marine waste removal and make the cleanup process more efficient. The proposed study uses image classification to help categorize the level of marine pollution in ocean underwater regions. The performance of two deep convolutional neural networks (VGG19 and ResNet50) is investigated in this study and VGG19 reported an accuracy of 98.1%.
Plastic pollution has emerged as one of the biggest environmentally threatening issues. Using image classification, the proposed study aids in categorizing the level of marine pollution in ocean underwater regions. This study classified the amount of pollution in the ocean using the two variants of Inception Convolutional Neural Network (CNN) models i.e., Inception-ResNet V2, and InceptionV3. High accuracies of up to 96.4% have been reported. This study will help researchers working in the field of water quality detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.