Background: Human parechovirus particularly genotype 3 (HPeV3) is an emerging infection affecting predominantly young infants. The potential for neurologic sequelae in a vulnerable subset is increasingly apparent. A review of 2 epidemics of human parechovirus (HpeV) infection in 2013 and in 2015 in Queensland, Australia, was undertaken, with an emphasis on identifying adverse neurodevelopmental outcome. Methods: All hospitalized cases with laboratory-confirmed HPeV infection between October 2013 June 2016 were identified. Clinical, demographic, laboratory and imaging data were collected and correlated with reported developmental outcome. Results: Laboratory-confirmed HPeV infections were identified in 202 patients across 25 hospitals; 86.6% (n = 175) were younger than 3 months 16.3% (n = 33) received intensive care admission. Of 142 cerebrospinal fluid samples which were HPeV polymerase chain reaction positive, all 89 isolates successfully genotyped were HPeV3. Clinical information was available for 145 children; 53.1% (n = 77) had follow-up from a pediatrician, of whom 14% (n = 11) had neurodevelopmental sequelae, ranging from hypotonia and gross motor delay to spastic quadriplegic cerebral palsy and cortical visual impairment. Of 15 children with initially abnormal brain magnetic resonance imaging, 47% (n = 7) had neurodevelopmental concerns, the remainder had normal development at follow-up between 6 and 15 months of age. Conclusions: This is the largest cohort of HPeV3 cases with clinical data and pediatrician-assessed neurodevelopmental follow-up to date. Developmental concerns were identified in 11 children at early follow-up. Abnormal magnetic resonance imaging during acute infection did not specifically predict poor neurodevelopmental in short-term follow-up. Continued follow-up of infants and further imaging correlation is needed to explore predictors of long-term morbidity.
Aim: The human parechovirus (HPeV) has emerged as a pathogen causing sepsis-like presentations in young infants, but there is a lack of data on HPeV presentations requiring intensive care support. We aimed to characterise the clinical presentation, disease severity, management and outcome of a population-based cohort of children with microbiologically confirmed HPeV infection requiring admission to paediatric intensive care units (PICUs) in Queensland, Australia during a recent outbreak. Methods: This was a multicentre retrospective study of children admitted to PICU between 1 January 2015 and 31 December 2016 with confirmed HPeV infection. Results: Thirty infants (median age 20 days) with HPeV genotype 3 were admitted to PICU, representing 16% of all children with HPeV admitted to hospital and 6.4% of non-elective PICU admissions in children <1 year of age. Children requiring PICU admission were younger than children admitted to hospital (P = 0.001). Apnoea, haemodynamic instability with tachycardia and seizures represented the main reasons for PICU admission. Eleven children (37%) required mechanical ventilation for a median duration of 62 h, 22 (73%) received fluid boluses and 7 (23%) were treated with vasoactive agents for a median duration of 53 h. Median length of stay was 2.62 days. A total of 24 children (80%) fulfilled sepsis criteria, 14 (47%) severe sepsis and 7 (23%) septic shock criteria. Eight (27%) had abnormal brain magnetic resonance imaging. No patient died. Conclusions: We confirm that HPeV infection is an important cause of sepsis-like syndrome in infants with substantial associated morbidity. Optimal management and long-term outcomes require further investigation.
T A B L E O F C O N T E N T S A B S T R A C T BackgroundAcute lung injury , and acute respiratory distress syndrome , are syndromes of severe respiratory failure. Children with acute lung injury or acute respiratory syndrome have high mortality and significant morbidity. Partial liquid ventilation is proposed as a less injurious form of respiratory support for these children. Uncontrolled studies in adults have shown improvement in gas exchange and lung compliance with partial liquid ventilation A single uncontrolled study in six children with acute respiratory syndrome showed some improvement in gas exchange during three hours of partial liquid ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.