It is well-known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using the Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models.
Observing light or heavy charged Higgs bosons $$H^\pm $$ H ± , lighter or heavier than the top quark, would be instant evidence of physics beyond the Standard Model. For this reason, in recent years searches for charged Higgs bosons have been in the center of attention of current colliders such as the CERN Large Hadron Collider (LHC). In spite of all efforts, no signal has been yet observed. Especially, the results of CMS and ATLAS experiments have excluded a large region in the MSSM $$m_{H^+}-\tan \beta $$ m H + - tan β parameter space for $$m_{H^+}=80{-}160$$ m H + = 80 - 160 GeV corresponding to the entire range of $$\tan \beta $$ tan β up to 60. Therefore, it seems that one should concentrate on probing heavy charged Higgs bosons ($$m_{H^\pm }>m_t$$ m H ± > m t ) so in this context each new probing channel is welcomed. In this work, we intend to present our proposed channel to search for heavy charged Higgses through the study of scaled-energy distribution of bottom-flavored mesons (B) inclusively produced in charged Higgs decay, i.e., $$H^+\rightarrow t\bar{b}\rightarrow B+X$$ H + → t b ¯ → B + X . Our study is carried out within the framework of the generic two Higgs doublet model (2HDM) using the massless scheme where the zero mass parton approximation is adopted for bottom quark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.