In well NJ-15 of the Nesjavellir geothermal field, Iceland, the transition of discrete smectite into discrete chlorite has been studied from drill cuttings recovered at depths of less than 1714 m and over a continuous range of temperatures between 60 and 300" C. At temperatures below 180" C, the clay fractions contain mixtures of di-and trioctahedral smectites, whose layer charge increases with depth. Between 200 and 240" C, discrete smectites have transformed into smectite-rich, randomly interstratified chlorite and smecite (RO C/S). Because the abundance of chlorite interlayers in this C/S is generally <20%, its presence can be detected only by electron microprobe techniques and not by X-ray diffraction. Between 245 and 265" C, both regularly (Rl) and randomly interstratified C/S are the predominant layer silicates. Discrete chlorite first appears at approximately 270°C and coexists with minor amounts of RO C/S at higher temperatures.RO and R1 C/S form a nearly complete compositional series between trioctahedral saponite and discrete chlorite end-members. The interlayer cation and Si content of smectites and C/S decrease with increasing temperature. The Mg/(Mg + Fe) content of smectite, C/S, and chlorite is unrelated to temperature. The percentage of chlorite in C/S, as determined by electron microprobe analyses, increases continuously with increasing temperature, except for occurrences of smectite-rich C/S in fresh basaltic dykes which have not thermally equilibrated with the higher grade country rocks.
[1] The core from the Hawaii Scientific Drilling Project 2 Phase 1 provides a unique opportunity for studying the low-temperature alteration processes affecting basalt in suboceanic-island environments. In hyaloclastites, which make up about one half of the lower 2 km of this core (the portion that accumulated below sea level), these processes have resulted in zones of incipient, smectitic, and palagonitic alteration. The alteration of sideromelane in these hyaloclastites has four distinct outcomes: dissolution, replacement by two different textural varieties of smectite (i.e., reddened and green grain-replacive), and conversion to palagonite. All samples show evidence of the incipient stage of alteration, suggesting that every sample passed through that zone. However, most samples that show palagonitic alteration do not also show evidence of smectitic alteration and vice versa, suggesting these two outcomes represent divergent paths of alteration. Incipient alteration (1080 to 1335 m depth) includes fracturing and mechanical reduction of porosity from 40-45% to about 20-30%; growth of one form of pore-lining smectite; dissolution of sideromelane; and formation of sideromelane-grain replacements consisting of Fe-hydroxide-strained smectite, titaniferous nodules, and tubules. DNA-specific stains and morphological features indicate that tubules are the result of microbial activity. Smectitic alteration (1405 to 1573 m) includes growth of a second variety of pore-lining smectite, pore-filling and grain-replacing smectite, and cements of phillipsite and Ca-silicate minerals. Palagonitic alteration (1573 m to the deepest samples) includes replacement of margins of shards with palagonite and growth of pore-filling chabazite. The porosity is reduced by cementation to less than 4% at 1573 m. Porosity does not decrease further down hole, nor does the thickness of palagonite rims on shards increase through the zone of palagonitic alteration. In these samples, palagonite is not an intermediate alteration product in the development of smectite. Rather, in hyaloclastites from the HSDP core, palagonite has formed after all observed smectites. Current downhole temperatures at the boundaries between the three alteration zones are in the range from 12°to 15°C, suggesting that geochemical thresholds or vital effects, not temperature conditions, control different outcomes of alteration.
[1] Palagonitized sideromelane from submarine volcaniclastic, seafloor volcanic, marine phreatomagmatic, lacustine phreatomagmatic, and subglacial volcanic settings was investigated using in situ microanalysis to test if palagonite composition and texture are related to depositional environment. Palagonitization extent varies linearly and inversely with original sample porosity, suggesting that porosity is a controlling factor of palagonitization. Water absorbance of reflected infrared light varies linearly with water content derived from electron microprobe totals. Palagonite water content has a linear, inverse relationship to palagonitization extent. REEs are immobile during palagonitization, so they can be used to construct isocon diagrams for estimating major-element concentration changes. Major-element and overall mass changes during palagonitization vary widely (particularly for FeO and TiO 2 ) and indicate that palagonitization cannot be an isovolumetric process. These parameters depend strongly on original sideromelane composition, thus requiring composition to be taken into account when performing global oceanic cation flux calculations. Subalkaline sideromelane dissolves much more rapidly than alkaline sideromelane during palagonitization. Two styles of palagonitization, burial-diagenesis (relatively long-duration, low water/rock; passive fluid circulation) and hydrothermal (relatively short-duration, high water/rock; hydrothermal fluid circulation), are recognized. Observed palagonite REE concentration gradients indicate that sideromelane dissolution must continue in the zone behind the advancing palagonitization front. MgO was found to be highly mobile during palagonitization. Observed palagonite MgO gradients are not developed during sideromelane dissolution, but instead record initiation of syn-and/or post-palagonitization conversion of the gel-palagonite layer to a phyllosillicate layer, consistent with evolution of sideromelane alteration layers toward equilibrium with the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.