Oxidative cells increase mitochondrial mass in response to stimuli such as changes in energy demand or cellular differentiation. This plasticity enables the cell to adapt dynamically to achieve the necessary oxidative capacity. However, the pathways involved in triggering mitochondrial biogenesis are poorly defined. The present study examines the impact of altering energy provision on mitochondrial biogenesis in muscle cells. C2C12 myoblasts were chronically treated with supraphysiological levels of sodium pyruvate for 72 h. Treated cells exhibited increased mitochondrial protein expression, basal respiratory rate, and maximal oxidative capacity. The increase in mitochondrial biogenesis was independent of increases in peroxisomal proliferator activator receptor-gamma coactivator-1alpha (PGC-1alpha) and PGC-1beta mRNA expression. To further assess whether PGC-1alpha expression was necessary for pyruvate action, cells were infected with adenovirus containing shRNA for PGC-1alpha before treatment with pyruvate. Despite a 70% reduction in PGC-1alpha mRNA, the effect of pyruvate was preserved. Furthermore, pyruvate induced mitochondrial biogenesis in primary myoblasts from PGC-1alpha null mice. These data suggest that regulation of mitochondrial biogenesis by pyruvate in myoblasts is independent of PGC-1alpha, suggesting the existence of a novel energy-sensing pathway regulating oxidative capacity.
OBJECTIVE:To determine the effect of leptin and post-treatment recovery on adipose tissue cellularity and apoptosis. In addition, to investigate whether Bcl-2 and/or Bax is involved in the mechanism of leptin-induced adipose tissue apoptosis. DESIGN: A total of 24 adult male Sprague-Dawley rats were injected i.c.v. with either 10 mg mouse leptin or 10 ml vehicle once per day for 4 days. At 24 h after the last injection, one group was killed while the other was monitored for 21 days. MEASUREMENTS: DNA fragmentation and Bcl-2 and Bax protein levels were determined in inguinal (ING), epididymal (EPI) and retroperitoneal (RP) white adipose tissues and the interscapular brown adipose tissue (BAT). Cellularity was determined in ING and EPI. RESULTS: Leptin significantly reduced the masses of all white fat pads [RP>ING>EPI] but not BAT. Cell volume was significantly reduced in EPI and ING. Only ING had a significantly reduced cell number from leptin treatment plus exhibited apoptosis by increased DNA fragmentation and DNA laddering, and upregulation of pro-apoptosis Bax protein. The other fat pads exhibited a general trend to increase the Bcl-2/Bax ratio. Recovery allowed for normalization of white fat pad mass, cell number and cell volume; however, BAT mass increased 42% over control. After recovery, apoptosis was not detected, Bcl-2 protein had increased in ING, and the Bcl-2/Bax ratio had risen overall. CONCLUSIONS: Central administration of mouse leptin in the rat targets white fat depots individually to reduce mass by a reduction in cell volume plus adipocyte deletion in, at least, the ING fat pad by Bax-mediated apoptosis. Even after a dramatic loss in adipose tissue mass and change in cellularity, the rat demonstrates a resilient return to control levels together with an increase in factors that prevent adipocyte loss.
Great strides have been made in understanding the genetics of body weight regulation, in part due to the study of rodent models of obesity that are characterized by mutations affecting leptin or its receptors. Leptin, produced in adipose tissue, acts both centrally and peripherally to orchestrate complex metabolic and behavioral changes that increase loss of adipose tissue, including suppressing food intake and increasing thermogenesis. In addition, recent evidence indicates that leptin acts centrally to trigger an apoptotic process resulting in adipocyte deletion. Loss of adipocytes by apoptosis may provide an explanation for the unexpected delay in return to initial energy status following leptin treatments. This review summarizes the major aspects of leptin-induced adipose tissue apoptosis, including some of the newest findings about possible mechanisms of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.