The importance of host genetic factors in determining susceptibility to tuberculosis (TB) has been studied extensively using various methods, such as case-control, candidate gene and genome-wide linkage studies. Several important candidate genes like human leucocyte antigen/alleles and non-human leucocyte antigen genes, such as cytokines and their receptors, chemokines and their receptors, pattern recognition receptors (including toll-like receptors, mannose binding lectin and the dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin), solute carrier family 11A member 1 (formerly known as natural resistance-associated macrophage protein 1) and purinergic P2X7 receptor gene polymorphisms, have been associated with differential susceptibility to TB in various ethnic populations. This heterogeneity has been explained by host-pathogen and gene-environment interactions and evolutionary selection pressures. Although the achievements of genetics studies might not yet have advanced the prevention and treatment of TB, researchers have begun to widen their scope of investigation to encompass these practical considerations.
The regulatory role of vitamin D receptor (VDR) gene variants of Bsm I, Apa I, Taq I, and Fok I polymorphisms on vitamin D(3)-modulated macrophage phagocytosis with live Mycobacterium tuberculosis and lymphoproliferative response to M. tuberculosis culture filtrate antigen (CFA) was studied in patients with pulmonary tuberculosis (n = 46) and in normal healthy subjects (NHS) (n = 64). Vitamin D(3) at a concentration of 1 x 10(-7) M enhanced the phagocytic potential of normal subjects who had a phagocytic index of less than 20%. This increase was seen in subjects with the genotypes BB (p = 0.017), AA (p = 0.016), tt (p = 0.034), and FF (p = 0.013) and the extended genotype BBAAtt (p = 0.034). Normal subjects with BBAAtt performed better phagocytosis than individuals with bbaaTT genotype (p = 0.034). Vitamin D(3) at 10(-9), 10(-8), and 10(-7) M concentrations suppressed the lymphoproliferative response to CFA antigen in normal subjects. This decreased lymphocyte response was observed in normal individuals with the genotypes BB (p = 0.0009), tt (p = 0.016), and FF (p = 0.008) and the extended genotype BBAAtt (p = 0.02). Addition of vitamin D(3) had no significant effect on macrophage phagocytosis and lymphoproliferative response to CFA in pulmonary TB patients. This may be due to the unresponsive nature of the cells to the action of vitamin D(3) or the downregulated VDR expression by virtue of the disease, which renders them inactive. The genotypes BB, tt, and the extended genotype BBAAtt may be associated with increased expression of VDR which in turn regulate the action of vitamin D(3) and modulate the immune functions to M. tuberculosis in NHS.
The present study suggests that PTB patients may have increased 1,25(OH)(2) D(3) levels, and this might lead to downregulation of VDR expression. Decreased VDR levels could result in defective VDR signaling. Moreover, addition of 1,25(OH)(2) D(3) might lead to increased expression of cathelicidin which could enhance the immunity against tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.