Summary Near-wall behaviour arising when a finite sized body moves in a channel flow is investigated for high flow rates. This is over the interactive-flow length scale that admits considerable upstream influence. The focus is first on quasi-steady two-dimensional flow past a thin body in the outer reaches of one of the viscous wall layers. The jump conditions near the front of the body play an important part in the whole solution which involves an unusual multi-structured flow due to the presence of the body: flows above, below, ahead of and behind the body interact fully. Analytical solutions are presented and the repercussions for shorter and longer bodies are then examined. Second, implications are followed through for the movement of a free body in a dynamic fluid–body interaction. Particular key findings are that instability persists for all body lengths, the growth rate decreases like the $1/4$ power of distance as the body approaches the wall, and lift production on the body is dominated by high pressures from an unexpected flow region emerging on the front of the body.
The use of static or dynamic roughness elements has been shown in the past to delay the separation of a laminar boundary layer from a solid surface. Here, we examine analytically the effect of such elements on the local and breakaway separation points, corresponding respectively to the position of zero skin friction and presence of a singularity in the roughness region, for flow over a hump embedded within the boundary layer. Two types of roughness elements are studied: the first is small and placed near the point of vanishing skin friction; the second is larger and extends downstream. The forced flow solution is found as a sum of Fourier modes, reflecting the fixed frequency forcing of the dynamic roughness. Solutions for both the static and dynamic roughness show that the presence of the roughness element is able to move the separation points downstream, given an appropriate choice of roughness frequency, height, position and width. This choice is found to be qualitatively similar to that observed for leading-edge separation. Furthermore, for a negative static roughness a small region of separated flow forms at high roughness depth, although there is a critical depth above which boundary-layer breakaway moves suddenly upstream.
It has been shown experimentally that dynamic roughness elements – small bumps embedded within a boundary layer, oscillating at a fixed frequency – are able to increase the angle of attack at which a laminar boundary layer will separate from the leading edge of an airfoil (Grager et al., in 6th AIAA Flow Control Conference, 2012, pp. 25–28). In this paper, we attempt to verify that such an increase is possible by considering a two-dimensional dynamic roughness element in the context of marginal separation theory, and suggest the mechanisms through which any increase may come about. We will show that a dynamic roughness element can increase the value of $\unicode[STIX]{x1D6E4}_{c}$ as compared to the clean airfoil case; $\unicode[STIX]{x1D6E4}_{c}$ represents, mathematically, the critical value of the parameter $\unicode[STIX]{x1D6E4}$ below which a solution exists in the governing equations and, physically, the maximum angle of attack possible below which a laminar boundary layer will remain predominantly attached to the surface. Furthermore, we find that the dynamic roughness element impacts on the perturbation pressure gradient in two possible ways: either by decreasing the magnitude of the adverse pressure peak or by increasing the streamwise extent in which favourable pressure perturbations exist. Finally, we discover that the marginal separation bubble does not necessarily have to exist at $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D6E4}_{c}$ in the time-averaged flow and that full breakaway separation can therefore occur as a result of the bursting of transient bubbles existing within the length scale of marginal separation theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.