Today, securing devices connected to the internet is challenging as security threats are generated through various sources. The protection of cyber-physical systems from external attacks is a primary task. The presented method is planned on the prime motive of detecting cybersecurity attacks and their impacted parameters. The proposed architecture employs the LYSIS dataset and formulates Multi Variant Exploratory Data Analysis (MEDA) through Principle Component Analysis (PCA) and Singular Value Decomposition (SVD) for the extraction of unique parameters. The feature mappings are analyzed with Recurrent 2 Convolutional Neural Network (R2CNN) and Gradient Boost Regression (GBR) to identify the maximum correlation. Novel Late Fusion Aggregation enabled with Cyber-Net (LFAEC) is the robust derived algorithm. The quantitative analysis uses predicted threat points with actual threat variables from which mean and difference vectors are evaluated. The performance of the presented system is assessed against the parameters such as Accuracy, Precision, Recall, and F1 Score. The proposed method outperformed by 98% to 100% in all quality measures compared to existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.