Automatic hate speech identification in unstructured Twitter is significantly more difficult to analyze, posing a significant challenge. Existing models heavily depend on feature engineering, which increases the time complexity of detecting hate speech. This work aims to classify and detect hate speech using a linguistic pattern-based approach as pre-trained transformer language models. As a result, a novel Pattern-based Deep Hate Speech (PDHS) detection model was proposed to detect the presence of hate speech using a cross-attention encoder with a dual-level attention mechanism. Instead of concatenating the features, our model computes dot product attention for better representation by reducing the irrelevant features. The first level of Attention is extracting aspect terms using predefined parts-of-speech tagging. The second level of Attention is extracting the sentiment polarity to form a pattern. Our proposed model trains the extracted patterns with term frequency, parts-of-speech tag, and Sentiment Scores. The experimental results on Twitter Dataset can learn effective features to enhance the performance with minimum training time and attained 88%F1Score.
With the continuous growth of online news articles, there arises the necessity for an efficient abstractive summarization technique for the problem of information overloading. Abstractive summarization is highly complex and requires a deeper understanding and proper reasoning to come up with its own summary outline. Abstractive summarization task is framed as seq2seq modeling. Existing seq2seq methods perform better on short sequences; however, for long sequences, the performance degrades due to high computation and hence a two-phase self-normalized deep neural document summarization model consisting of improvised extractive cosine normalization and seq2seq abstractive phases has been proposed in this paper. The novelty is to parallelize the sequence computation training by incorporating feed-forward, the self-normalized neural network in the Extractive phase using Intra Cosine Attention Similarity (Ext-ICAS) with sentence dependency position. Also, it does not require any normalization technique explicitly. Our proposed abstractive Bidirectional Long Short Term Memory (Bi-LSTM) encoder sequence model performs better than the Bidirectional Gated Recurrent Unit (Bi-GRU) encoder with minimum training loss and with fast convergence. The proposed model was evaluated on the Cable News Network (CNN)/Daily Mail dataset and an average rouge score of 0.435 was achieved also computational training in the extractive phase was reduced by 59% with an average number of similarity computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.