The classical Discrete Fourier Transform (DFT) satisfies a duality property that transforms a discrete time signal to the frequency domain and back to the original domain. In doing so, the original signal is reversed to within a multiplicative factor, namely the dimension of the transformation matrix. In this paper, we prove that the DFT based on Simpson's method satisfies a similar property and illustrate its effect on a real discrete signal. The duality property is particularly useful in determining the components of the transformation matrix as well as components of its positive integral powers. Copyright
Communicated by J. BanasiakFourier analysis plays a vital role in the analysis of continuous-time signals. In many cases, we are forced to approximate the Fourier coefficients based on a sampling of the time signal. Hence, the need for a discrete transformation into the frequency domain giving rise to the classical discrete Fourier transform. In this paper, we present a transformation that arises naturally if one approximates the Fourier coefficients of a continuous-time signal numerically using the Simpson quadrature rule. This results in a decomposition of the discrete signal into two sequences of equal length. We show that the periodic discrete time signal can be reconstructed completely from its discrete spectrum using an inverse transform. We also present many properties satisfied by this transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.