a b s t r a c tMicro-machining technology is effectively used in modern manufacturing industries. This paper investigates the influence of three different input parameters such as voltage, capacitance and feed rate of micro-wire electrical discharge machining (micro-WEDM) performances of material removal rate (MRR), Kerf width (KW) and surface roughness (SR) using response surface methodology with central composite design (CCD). The experiments are carried out on titanium alloy (Tie6Ale4V). The machining characteristics are significantly influenced by the electrical and non-electrical parameters in micro-WEDM process. Analysis of variance (ANOVA) was performed to find out the significant influence of each factor. The model developed can use a genetic algorithm (GA) to determine the optimal machining conditions using multi-objective optimization technique. The optimal machining performance of material removal rate, Kerf width and surface roughness are 0.01802 mm 3 /min, 101.5 mm and 0.789 mm, respectively, using this optimal machining conditions viz. voltage 100 V, capacitance 10 nF and feed rate 15 mm/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.