In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different type of credits, number of groups and other specific characteristics. Besides, it adds restrictions based on the time compatibility among the different subjects, the lecturers' availability, the maximum number of subjects per lecturer, the maximum number of lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all of them in order to increase the teaching quality. Schedules heterogeneity and other features regarding the operation of some universities justify the usefulness of this model since no study that deals with all of them has been found in the literature review. Model validation has been performed with two real data sets collected from one academic year schedule at the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.