Recombinant strains of herpesvirus of turkeys (HVT) were constructed that contain either the fusion protein gene or the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) inserted into a nonessential gene of HVT. Expression of the NDV antigens was regulated from a strong promoter element derived from the Rous sarcoma virus long terminal repeat. Recombinant HVT strains were stable and fully infectious in cell culture and in chickens. Chickens receiving a single intra-abdominal inoculation at 1 day of age with recombinant HVT expressing the NDV fusion protein had an immunological response and were protected (> 90%) against lethal intramuscular challenge at 28 days of age with the neurotropic velogenic NDV strain Texas GB. Recombinant HVT expressing the NDV hemagglutinin-neuraminidase provided partial protection (47%) against the same challenge. Chickens vaccinated with recombinant HVT vaccines had low levels of protection against NDV replication in the trachea when challenged ocularly. Recombinant HVT vaccines and the parent HVT strain provided similar levels of protection to chickens challenged with the very virulent RB1B strain of Marek's disease virus, indicating that insertion of foreign sequences into the HVT genome did not compromise the ability of HVT to protect against Marek's disease.
The identification of unique Marek's disease (MD) virus (MDV) antigens expressed not only in lytically infected cells but also in latently infected MD lymphoblastoid tumor cell lines is important in understanding the molecular mechanisms of latency and transformation by MDV, an oncogenic lymphotropic herpesvirus of chickens. Through cDNA and nucleotide sequence analysis, an open reading frame (designated the pp38 ORF) which encodes a predicted polypeptide of 290 amino acids was identified in BamHI-H. Demonstration that the pp38 ORF spans the junction of the MDV long unique and long internal repeat regions (MDV has an alphaherpesvirus genome structure) precludes the presence of the gene encoding the B-antigen complex (gplOO, gp6O, and gp49) in the same region of BamHI-H, where it was originally thought to exist. Duplication of the complete pp38 ORF was not observed in BamHI-D, but part of it (encoding 45 amino acids) was found in the long terminal repeat region of the fragment. By use of tipE-pp38 fusion proteins, antisera against pp38 were prepared. By immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a predominant virus-specific 38,000-dalton polypeptide (designated pp38) and a minor 24,000-dalton polypeptide (designated p24) were found. No precursor-product relationship was found between pp38 and p24 by pulse-chase analysis, and only pp38 was detected by Western blot (immunoblot) analysis with antiserum to pp38. pp38 was found to be phosphorylated and present in oncogenic serotype 1-but not nononcogenic serotype 3-infected cells. Expression of the gene encoding pp38 was relatively insensitive to phosphonoacetic-acid inhibition, suggesting that pp38 may belong to one of the early classes of herpesvirus proteins. pp38 was also detected in the latently infected MSB-1 lymphoblastoid tumor cell line. The detection of antibody against pp38 in immune chicken sera indicates that pp38 is an immunogen in birds with MD. Most of the properties described here for a protein detected by methods based on finding the ORF first are identical to those of a 38-kDa phosphoprotein reported by others, suggesting that they are the same. Collectively, the data reported here provide (i) more definitive information on the complete ORF of another MDV gene and the protein that it encodes, (ii) clarification of the gene content within a specific region of the MDV genome, and (iii) the molecular means to conduct further studies to determine whether pp38 plays a role in MDV latency and transformation.
The onset of protection against Newcastle disease and the effect of maternal antibodies to Newcastle disease virus (NDV) and Marek's disease virus (MDV) on vaccine efficacy were determined following vaccination of chickens with a recombinant herpesvirus of turkeys (HVT) vaccine expressing the fusion (F) glycoprotein gene of NDV. Onset of protection following intra-abdominal administration of the recombinant HVT/F vaccine at 1 day of age and subsequent ocular challenge with the neurotropic velogenic Texas GB strain of NDV was determined to occur between days 14 and 21 post-vaccination (PV). Vaccination with the Hitchner B1 strain of NDV resulted in protection by day 6 PV, and vaccination with an inactivated NDV oil-emulsion vaccine induced protection by day 14 PV. One-day-old broiler-type chickens with maternal antibodies to both NDV and MDV and 1-day-old specific-pathogen-free (SPF) white leghorn chickens lacking maternal antibodies were vaccinated with the recombinant HVT/F vaccine or with control vaccines, challenged intra-abdominally with the very virulent RB1B strain of MDV on day 8 PV, and challenged with the Texas GB strain of NDV on day 29 PV. The HVT/F and NDV strain Hitchner B1 vaccines provided 73% and 80% protection, respectively, against NDV in broilers, whereas both vaccines resulted in 100% protection in SPF leghorns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.