We report the realization and characterization of an optofluidic microlaser based on a Fabry-Perot resonator fabricated by exploiting two direct writing fabrication techniques: the femtosecond laser micromachining and the inkjet printing technology. In this way a standard Fabry-Perot cavity has been integrated into an optofluidic chip. When using rhodamine 6G dissolved in ethanol at concentration of 5∙10-3 mol/l, laser emission was detected at a threshold energy density of 1.8 μJ/mm2 at least one order of magnitude lower than state-of-the-art optofluidic lasers. Linewidth below ~0.6 nm was measured under these conditions with a quality factor Q~103. These performances and robustness of the device makes it an excellent candidate for biosensing, security and environment monitoring applications.
Abstract:We present the different optofluidic lasers which have been realized using the Femtosecond Micromachining technique to fabricate the monolithic optofluidic structures in glass chips. We show how the great flexibility of this 3D technique allows getting different kind of optical cavities. The most recent devices fabricated by this technique as ring shaped and Fabry-Perot resonators show excellent emission performances. We also point out how the addition of the inkjet printing technique provides further opportunities in realizing optofluidic chips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.