We have developed six convolutional neural network (CNN) models for finding optimal brain tumor detection system on high‐grade glioma and low‐grade glioma lesions from voluminous magnetic resonance imaging human brain scans. Glioma is the most common form of brain tumor. The models are constructed based on the different combinations and settings of hyperparameters with conventional CNN architecture. The six models are two layers with five epochs, five layers with dropout, five layers with stopping criteria (FLSC), FLSC and dropout (FLSCD), FLSC and batch normalization (FLSCBN), and FLSCBN and dropout. The models were trained and tested with BraTS2013 and whole brain atlas data sets. Among them, FLSCBN model yielded the best classification results for brain tumor detection. Experimental results revealed that our deep learning approach was better than the conventional state‐of‐art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.