Choline kinase (ChoK) is a cytosolic enzyme present in various tissues, which catalyzes the phosphorylation of choline to form phosphorylcholine (PCho) in the presence of ATP and magnesium. ChoK is important for the generation of two major membrane phospholipids, phosphatidylcholine (PC) and sphingomyelin (SM) and subsequently for the cell division. ChoK plays a vital role in cell signaling pathways and regulation of cell growth along with PCho involved in malignant transformation through ras oncogenes in different cancers such as breast, lung, colon, prostate, neuroblastoma, hepatic lymphomas, meningiomas and diverse murine tumours. The Ras effectors serine/threonine kinase (Raf-1), the Ral-GDP dissociation stimulator (Ral-GDS) and the phosphatidylinositol 3-kinase (PI3K) are involved in the activation of ChoK during tumorigenesis. ChoK gene induction seems to be associated with certain cell stress or cell defense. Nowadays, RNAi appear to be one of the most promising routes in the cancer therapy. The anticancer potential of both stable expression of siRNAs and their high sequence specificity by RNAi mediated suppression of oncogenic ras in human pancreatic carcinoma, human melanomas and ovarian cancer has been observed. It has an important role in sequence specific post-transcriptional gene silencing mechanism. Presently, the crystal structure of Caenorhabditis elegans choline kinase A-2 (ChoKA-2) is available, which may be useful for comparative modeling of human ChoK and further modeling studies. The present review aims at the general overview of importance, expression, structure, progress in molecular modeling, active site analysis and inhibitors of ChoK. It also highlights the recent role of ChoK in various types of Ras-dependent and Ras-independent carcinogenesis.
Subtype selectivity of phosphodiesterase 4 (PDE4) has been proposed to be the most salient feature for the development of drugs for asthma and inflammation. The present review provides an account of various strategies to overcome the side effects of the PDE4 inhibitors. Subtype selectivity and recent developments of molecular modeling approaches towards PDE4 were addressed using QSAR and docking, followed by a detailed structural analysis of more than three dozen available X-ray structures of PDE4B and PDE4D. Usually, the lack of a 3-dimensional structure of a target protein is a bottleneck for rational drug design approaches. However, in this case the availability of 39 X-ray structures along with co-crystals has not improved the therapeutic ratio of drugs through rational drug design approaches. The investigation of structures led to find significant variations in the M-loop region, which is the integral part of the active site of PDE4B and PDE4D. These differences can be accounted for by varying conformation of the Pro(430) residue and a Thr(436)/Asn(362) mutation in the M-loop that causes variations in adjacent residue properties and also the pattern of hydrogen-bonding interactions. The impact of the M-loop region on inhibitor binding has been further scrutinized by MOLCAD surfaces and hydrophobicity. These have shown that PDE4B is more hydrophobic in nature than PDE4D in the M-loop region. A review of the above aspects given the emphasis on a new PDE4 inhibitor which can access both metal and solvent pockets may possibly lead to ligands with enhanced potency. The lining of the Q2 pocket that involves the M-loop region may be considered for the design of potent subtype-selective inhibitors.
Two-dimensional (2D) and three-dimensional (3D) quantitative structure activity relationship (QSAR) studies have been carried out on a series of 55 bis-pyridinium compounds to find out the structural requirements of choline kinase (ChoK) inhibitors. The best predictions were obtained from the model where 44 compounds were considered in the training set and the remaining 11 in the test set. The results that are obtained from 2D and 3D-QSAR studies may provide useful insights into the roles of various substitution patterns on the bis-pyridinium skeleton and may also help to design more potent compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.