Linear and nonlinear Rayleigh-Bénard convections with variable heat source (sink) are studied analytically using the Fourier series. The strength of the heat source is characterized by an internal Rayleigh number, R¡, whose ejfect is to decrease the critical external Rayleigh number. Linear theory involving an autonomous system (linearized Lorenz model) further reveals that the critical point at pre-onset can only be a saddle point. In the postonset nonlinear study, analysis of the generalized Lorenz model leads us to two other critical points that take over from the critical point of the pre-onset regime. Classical analysis of the Lorenz model points to the possibility of chaos. The effect of R¡ is shown to delay or advance the appearance of chaos depending on whether R, is negative or positive. This aspect is also reflected in its ejfect on the Nusselt number. The Lyapunov exponents provide useful information on the closing in and opening out of the trajectories of the solution of the Lorenz model in the cases of heat sink and heat source, respectively. The Ginzburg-Landau models for the problem are obtained via the 3-mode and 5-mode Lorenz models of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.