Laser powder bed fusion of bulk metallic glasses offers great potential to overcome the existing restrictions of the geometrical size and complexity of bulk metallic glasses in conventional manufacturing routes due to high cooling rates during laser powder bed fusion. Bulk metallic glasses exhibit extraordinary strength, paired with high elasticity. Yet insights into additive manufactured bulk metallic glasses, especially of complex structures, are limited. The present article investigates the mechanical behaviour of Zrbased bulk metallic glasses, fabricated into honeycomb structures through laser powder bed fusion, by performing three-point bending tests. The results reveal a significant increase in specific strength, quasi-plasticity, and high elastic elongation. These structures thus offer great potential for lightweight applications and compliant mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.