A function F with simple and nice algebraic properties is defined on a subset of the space of complex sequences. Some special functions are expressible in terms of F, first of all the Bessel functions of first kind. A compact formula in terms of the function F is given for the determinant of a Jacobi matrix. Further we focus on the particular class of Jacobi matrices of odd dimension whose parallels to the diagonal are constant and whose diagonal depends linearly on the index. A formula is derived for the characteristic function. Yet another formula is presented in which the characteristic function is expressed in terms of the function F in a simple and compact manner. A special basis is constructed in which the Jacobi matrix becomes a sum of a diagonal matrix and a rank-one matrix operator. A vector-valued function on the complex plain is constructed having the property that its values on spectral points of the Jacobi matrix are equal to corresponding eigenvectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.