Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nanotubes and silver nanoparticles are taken as hybrid nanoparticles and water is considered as base fluid. Using similarity transformation method, the governing equations are changed into system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using finite-element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of non-dimensional rates of heat transfer, mass transfer and velocity are also analyzed, and the results are depicted in tables. Temperature sketches of hybrid nanofluid intensified in both steady and unsteady cases as volume fraction of both nanoparticles rises.
The aim of the current analysis is to investigate heat and mass transfer characteristics of single and multi-walled water-based carbon nanotubes Maxwell nanofluid flow between continuously rotating stretchable disks under the sway of chemical reaction and radiation. Boundary conditions of the convective type of temperature are employed at both lower and upper rotating disks in the preparation. Similarity variables are employed to transform the governing partial differential equations into the nonlinear ordinary differential equations. The computational finite element method is applied to solve this nonlinear system of equations along with boundary conditions. The sway of different admissible parameters on the profiles of concentration, temperature, and velocity are inspected and revealed through graphs. Furthermore, the numerical solutions for rates of temperature, concentration, and rates of velocity are depicted in tabular form. It is revealed that temperature sketches deteriorate with augmented values of Deborah number at both upper and lower disks of single-walled carbon nanotubes and multi-walled carbon nanotubes with water-based Maxwell nanofluids. K E Y W O R D S carbon nanotubes, chemical reaction, convective boundary conditions, finite element method, Maxwell nanofluids, thermal radiation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.