A novel, nanoscale zero-valent iron-impregnated cashew nut shell (NZVI-CNS) was synthesized towards the removal of Ni(II) ions from aqueous solution using impregnation procedure. The factors affecting Ni(II) ion adsorption in a batch mode were studied including the initial metal ion concentration, solution pH, temperature, adsorbent dosage, and contact time. The adsorption isotherm and kinetics could be described well with Freundlich and pseudo firstorder, respectively. The maximum monolayer adsorption capacity for the removal of Ni(II) ions was found to be 70.05 mg/g. The calculated thermodynamic parameters showed that the removal of Ni(II) ions by the NZVI-CNS was spontaneous, feasible, and exothermic in nature. The amount of adsorbent needed to treat the known volume of the effluent was calculated by using single-stage batch adsorber design. The experimental results specifies that the NZVI-CNS have a high adsorption capacity for the removal of Ni(II) ions from aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.