A very efficient and fast instrument to measure the plasma potential of ion sources has been developed at the Department of Physics, University of Jyväskylä (JYFL). The operating principle of this novel instrument is to apply a decelerating voltage into a mesh located in the beamline of the ion source. The plasma potential is determined by measuring the current at the grounded electrode situated behind the mesh as a function of the voltage. In this article, we will introduce the instrument and the first results. In the experiments, the instrument was connected to the beamline of the JYFL 6.4 GHz electron cyclotron resonance ion source. The plasma potential was measured with different source conditions and it was observed to vary between 30-65 V. The plasma potential tended to increase as the microwave power, or the gas feed rate, was increased. These results are consistent with earlier observations and estimations. It was also noticed that the value of the plasma potential changed when the negative voltage applied to the biased disk at the injection of the ion source was varied. Complementary to optical plasma diagnostics, such an instrument can be used as a very efficient tool to get a precise relationship between plasma conditions and extracted beams.
At radioactive ion beam facilities like ISOLDE at CERN, a high purity of the element of interest in the ion beam is essential for most experiments on exotic nuclei. Due to its unique combination of high ionization efficiency and ultimate elemental selectivity, the Resonance Ionization Laser Ion Source, RILIS, has become the most frequently used ion source at ISOLDE and at the majority of similar facilities worldwide. However, isobaric contamination predominantly stemming from unspecific surface ionization may still introduce severe limitations. By applying the highly selective resonance ionization technique inside a radio-frequency quadrupole ion guide structure, the novel approach of the Laser Ion Source and Trap, LIST, suppresses surface ionized isobaric contaminants by an electrostatic repelling potential. Following extensive feasibility studies and off-line tests, the LIST device has been adapted and refined to match the stringent operational constraints and to survive the hostile environment of the ISOLDE front-end region enclosing the highly radioactive nuclear reaction target. The LIST operation was successfully demonstrated for the first time on-line at ISOLDE during two experiments, attesting its suitability for radioactive isotope production under routine conditions. Data of these on-line characterization measurements confirm a suppression of surface-ionized isobars by more than a factor of 1000 in accordance to off-line studies that were carried out for the preparation of the on-line experiments. During the first on-line test, the suppression was associated with an efficiency loss of not more than a factor of about 50 with respect to normal RILIS operation. These losses could be further reduced to only about 20 during the second run. Results of the off-line studies in comparison to the first on-line characterization data are discussed here
The effect of the gas mixing technique on the plasma potential, energy spread, and emittance of ion beams extracted from the JYFL 14 GHz electron cyclotron resonance ion source has been studied under various gas mixing conditions. The plasma potential and energy spread of the ion beams were studied with a plasma potential instrument developed at the Department of Physics, University of Jyväskylä ͑JYFL͒. With the instrument the effects of the gas mixing on different plasma parameters such as plasma potential and the energy distribution of the ions can be studied. The purpose of this work was to confirm that ion cooling can explain the beneficial effect of the gas mixing on the production of highly charged ion beams. This was done by measuring the ion-beam current as a function of a stopping voltage in conjunction with emittance measurements. It was observed that gas mixing affects the shape of the beam current decay curves measured with low charge-state ion beams indicating that the temperature and/or the spatial distribution of these ions is affected by the mixing gas. The results obtained in the emittance measurements support the conclusion that the ion temperature changes due to the gas mixing. The effect of the energy spread on the emittance of different ion beams was also studied theoretically. It was observed that the emittance depends considerably on the dispersive matrix elements of the beam line transfer matrix. This effect is due to the fact that the dipole magnet is a dispersive ion optical component. The effect of the energy spread on the measured emittance in the bending plane of the magnet can be several tens of percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.