The main components of Cognitive Radio networks are Primary Users (PU) and Secondary Users (SU). The most essential method used in Cognitive networks is Spectrum Sensing, which detects the spectrum band and opportunistically accesses the free white areas for different users. Exploiting the free spaces helps to increase the spectrum efficiency. But the existing spectrum sensing techniques such as energy detectors, cyclo-stationary detectors suffer from various problems such as complexity, non-responsive behaviors under low Signal to Noise Ratio (SNR) and computational overhead, which affects the performance of the sensing accuracy. Many algorithms such as Long-Short Term Memory (LSTM), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) play an important role in designing intelligent spectrum sensing techniques due to the excellent learning ability of deep learning frameworks, but still require improvisation in terms of sensing accuracy under dynamic environmental conditions. This paper, we propose the novel and hybrid CNN-Cuttle-Fish Optimized Long Short Term Memory (COLSTM), an improved version of LSTM that is well suited for the dynamic changes of environmental SNR with less computational overhead and complexity. The proposed COLSTM based spectrum sensing technique exploits the various statistical features from spectrum data of PU to improve the sensing efficiency. Furthermore, the addition of shuttle-fish optimization in LSTM has reduced the computational overhead and complexity which in turn enhanced the sensing performances. The proposed methodology is validated on spectrum data acquired using RaspberryPi-RTLSDR experimental test-beds. The proposed spectrum sensing technique and the existing classical spectrum sensing techniques are compared. Experimental results show that the proposed scheme has shown the brighter enhancement of performance under different SNR environments. Further, the improvised performance has been achieved at low complexity and low computational overhead when compared with the other existing LSTM networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.