The star S2 orbiting the compact radio source Sgr A* is a precision probe of the gravitational field around the closest massive black hole (candidate). Over the last 2.7 decades we have monitored the star’s radial velocity and motion on the sky, mainly with the SINFONI and NACO adaptive optics (AO) instruments on the ESO VLT, and since 2017, with the four-telescope interferometric beam combiner instrument GRAVITY. In this Letter we report the first detection of the General Relativity (GR) Schwarzschild Precession (SP) in S2’s orbit. Owing to its highly elliptical orbit (e = 0.88), S2’s SP is mainly a kink between the pre-and post-pericentre directions of motion ≈±1 year around pericentre passage, relative to the corresponding Kepler orbit. The superb 2017−2019 astrometry of GRAVITY defines the pericentre passage and outgoing direction. The incoming direction is anchored by 118 NACO-AO measurements of S2’s position in the infrared reference frame, with an additional 75 direct measurements of the S2-Sgr A* separation during bright states (“flares”) of Sgr A*. Our 14-parameter model fits for the distance, central mass, the position and motion of the reference frame of the AO astrometry relative to the mass, the six parameters of the orbit, as well as a dimensionless parameter fSP for the SP (fSP = 0 for Newton and 1 for GR). From data up to the end of 2019 we robustly detect the SP of S2, δϕ ≈ 12′ per orbital period. From posterior fitting and MCMC Bayesian analysis with different weighting schemes and bootstrapping we find fSP = 1.10 ± 0.19. The S2 data are fully consistent with GR. Any extended mass inside S2’s orbit cannot exceed ≈0.1% of the central mass. Any compact third mass inside the central arcsecond must be less than about 1000 M⊙.
Context. The Galactic centre (GC) is of fundamental astrophysical interest, but existing near-infrared surveys fall short covering it adequately, either in terms of angular resolution, multi-wavelength coverage, or both. Here we introduce the GALACTICNUCLEUS survey, a JHKs imaging survey of the centre of the Milky Way with a 0.2″ angular resolution. Aims. The purpose of this paper is to present the observations of Field 1 of our survey, centred approximately on SgrA* with an approximate size of 7.95′ × 3.43′. We describe the observational set-up and data reduction pipeline and discuss the quality of the data. Finally, we present the analysis of the data. Methods. The data were acquired with the near-infrared camera High Acuity Wide field K-band Imager (HAWK-I) at the ESO Very Large Telescope (VLT). Short readout times in combination with the speckle holography algorithm allowed us to produce final images with a stable, Gaussian PSF (point spread function) of 0.2″ FWHM (full width at half maximum). Astrometric calibration is achieved via the VISTA Variables in the Via Lactea (VVV) survey and photometric calibration is based on the SIRIUS/Infrared Survey Facility telescope (IRSF) survey. The quality of the data is assessed by comparison between observations of the same field with different detectors of HAWK-I and at different times. Results. We reach 5σ detection limits of approximately J = 22, H = 21, and Ks = 20. The photometric uncertainties are less than 0.05 at J ≲ 20, H ≲ 17, and Ks ≲ 16. We can distinguish five stellar populations in the colour-magnitude diagrams; three of them appear to belong to foreground spiral arms, and the other two correspond to high- and low-extinction star groups at the GC. We use our data to analyse the near-infrared extinction curve and find some evidence for a possible difference between the extinction index between J − H and H − Ks. However, we conclude that it can be described very well by a power law with an index of αJHKs = 2.30 ± 0.08. We do not find any evidence that this index depends on the position along the line of sight, or on the absolute value of the extinction. We produce extinction maps that show the clumpiness of the ISM (interstellar medium) at the GC. Finally, we estimate that the majority of the stars have solar or super-solar metallicity by comparing our extinction-corrected colour-magnitude diagrams with isochrones with different metallicities and a synthetic stellar model with a constant star formation.
We present a study of the three dimensional structure, kinematics, and age distribution of the Orion OB association, based on the second data release of the Gaia satellite (Gaia DR2). Our goal is to obtain a complete picture of the star formation history of the Orion complex and to relate our findings to theories of sequential and triggered star formation. We select the Orion population with simple photometric criteria, and we construct a three dimensional map in galactic Cartesian coordinates to study the physical arrangement of the stellar clusters in the Orion region. The map shows structures that extend for roughly 150 pc along the line of sight, divided in multiple sub-clusters. We separate different groups by using the density based clustering algorithm DBSCAN. We study the kinematic properties of all the groups found by DBSCAN first by inspecting their proper motion distribution, and then by applying a kinematic modelling code based on an iterative maximum likelihood approach, which we use to derive their mean velocity, velocity dispersion and isotropic expansion. By using an isochrone fitting procedure we provide ages and extinction values for all the groups. We confirm the presence of an old population (∼ 15 Myr) towards the 25 Ori region, and we find that groups with ages of 12 − 15 Myr are present also towards the Belt region. We notice the presence of a population of ∼ 10 Myr also in front of the Orion A molecular cloud. Our findings suggest that star formation in Orion does not follow a simple sequential scenario, but instead consists of multiple events, which caused kinematic and physical sub-structure. To fully explain the detailed sequence of events, specific simulations and further radial velocity data are needed.
We present a large ∼30″ × 30″ spectroscopic survey of the Galactic Center using the SINFONI IFU at the VLT. Combining observations of the last two decades we compile spectra of over 2800 stars. Using the Bracket-γ absorption lines, we identify 195 young stars, extending the list of known young stars by 79. In order to explore the angular momentum distribution of the young stars, we introduce an isotropic cluster prior. This prior reproduces an isotropic cluster in a mathematically exact way, which we test through numerical simulations. We calculate the posterior angular momentum space as a function of projected separation from Sgr A*. We find that the observed young star distribution is substantially different from an isotropic cluster. We identify the previously reported feature of the clockwise disk and find that its angular momentum changes as a function of separation from the black hole and thus confirm a warp of the clockwise disk (p ∼ 99.2%). At large separations, we discover three prominent overdensities of the angular momentum. One overdensity has been reported previously, the counterclockwise disk. The other two are new. Determining the likely members of these structures, we find that as many as 75% of stars can be associated with one of these features. Stars belonging to the warped clockwise disk show a top-heavy K-band luminosity function, while stars belonging to the larger separation features do not. Our observations are in good agreement with the predictions of simulations of in situ star formation and argue for the common formation of these structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.