One DNA A (KA30) and five different DNA B components (KA21, KA22, KA27, KA28 and KA34) of a geminivirus, Mungbean yellow mosaic virus-Vigna (MYMV-Vig) were cloned from a pooled sample of field-infected Vigna mungo plants from Vamban, South India. MYMV-Vig DNA A (KA30) and one of the DNA B components (KA27) exhibited 97% and 95% sequence identities, respectively, to those of MYMV reported from Thailand. However, the DNA B components KA21, KA22, KA28 and KA34 exhibited only 71 to 72% sequence identity to MYMV DNA B. Co-existence of multiple DNA B components in field-infected V. mungo was proved by Southern and PCR analyses. Each of the five DNA B components was infective together with the DNA A upon agroinoculation. Agroinoculation with mixed cultures of Agrobacterium with partial dimers of DNA A and all five DNA Bs proved that all five DNA B components can co-infect a single V. mungo plant.
Mungbean yellow mosaic virus-Vigna (MYMV-Vig) is a bipartite geminivirus that causes a severe yellow mosaic disease in blackgram. An assay was developed to study MYMV-Vig replication by agroinoculation of tobacco leaf discs with partial dimers of the virus. This assay, in a non-host model plant, was used to evaluate pathogen-derived resistance contributed by MYMV-Vig genes in transgenic plants. Viral DNA accumulation was optimum in tobacco leaf discs cultured for 10 days after infection with Agrobacterium tumefaciens strain Ach5 containing partial dimers of both DNA A and DNA B of MYMV-Vig. Transgenic tobacco plants with MYMV-Vig genes for coat protein (CP), replication-associated protein (Rep)-sense, Rep-antisense, truncated Rep (T-Rep), nuclear shuttle protein (NSP) and movement protein (MP) were generated. Leaf discs from transgenic tobacco plants, harbouring MYMV-Vig genes, were agroinoculated with partial dimers of MYMV-Vig and analyzed for viral DNA accumulation. The leaf discs from transgenic tobacco plants harbouring CP and MP genes supported the accumulation of higher levels of MYMV-Vig DNA. However, MYMV-Vig accumulation was inhibited in one transgenic plant harbouring the Rep-sense gene and in two plants harbouring the T-Rep gene. Northern analysis of these plants revealed a good correlation between expression of Rep or T-Rep genes and inhibition of MYMV-Vig accumulation.
Agroinfection of bipartite geminiviruses is routinely done by mixing two Agrobacterium strains that independently harbor partial tandem repeats of DNA A and DNA B. We report here an improved agroinfection method for bipartite geminiviruses that utilizes one strain of Agrobacterium that harbors DNA A and DNA B partial tandem repeats on two compatible replicons. A cointegrate vector, pGV2260∷pGV1.3A, with the partial tandem repeat of Mungbean yellow mosaic virus-Vi (MYMV-Vi) DNA A and a binary vector, pGA1.9B, with the partial tandem repeat of MYMV-Vi DNA B gave an agroinfection efficiency of 24% when harbored in two Agrobacterium strains and an efficiency of 61% when harbored in one Agrobacterium strain. A combination of binary vectors, pGA1.9A with MYMV-Vi DNA A partial tandem repeat and pGA1.9B with DNA B partial tandem repeat, gave an agroinfection efficiency of 74% when harbored in two strains. But pGA1.9A and pPZP1.9B (a partial tandem repeat of DNA B), when present in the same Agrobacterium strain, gave 100% agroinfection. Accumulation of viral DNA was shown by Southern blotting. The single-strain method using two compatible replicons consistently gave 100% agroinfection efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.