This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
t r a c tA new facility named SPARC_LAB has been recently launched at the INFN National Laboratories in Frascati, merging the potentialities of the former projects SPARC and PLASMONX. We describe in this paper the status and the future perspectives at the SPARC_LAB facility.
We take advantage of peculiar properties of three dimensional incompressible turbulence to introduce a nonstandard Exact Renormalization Group method. A Galilean invariance preserving regularizing procedure is utilized and a field truncation is adopted to test the method. Results are encouraging: the energy spectrum E(k) in the inertial range scales with exponent −1.666±0.001 and the Kolmogorov constant C K , computed for several (realistic) shapes of the stirring force correlator, agrees with experimental data. * To be published on Phys. Lett. B
The production of high-quality electron bunches in Laser Wake Field Acceleration relies on the possibility to inject ultra-low emittance bunches in the plasma wave. In this paper we present a new bunch injection scheme in which electrons extracted by ionization are trapped by a large-amplitude plasma wave driven by a train of resonant ultrashort pulses. In the REsonant Multi-Pulse Ionization (REMPI) injection scheme, the main portion of a single ultrashort (e.g Ti:Sa) laser system pulse is temporally shaped as a sequence of resonant sub-pulses, while a minor portion acts as an ionizing pulse. Simulations show that high-quality electron bunches with normalized emittance as low as 0.08 mm×mrad and 0.65% energy spread can be obtained with a single present-day 100TW-class Ti:Sa laser system.
The process of Thomson scattering of an ultra-intense laser pulse by a relativistic electron bunch has been proposed as a way to obtain a bright source of short, tunable and quasi-monochromatic X-ray pulses. The real applicability of such a method depends crucially on the electron-beam quality, the angular and energetic distributions playing a relevant role. In this paper we present the computation of the Thomson-scattered radiation generated by a plane-wave, linearly polarized and flat-top laser pulse, incident on a counterpropagating electron bunch having a sizable angular divergence and a generic energy distribution. Both linear and nonlinear Thomson-scattering regimes are considered and the impact of the rising front of the pulse on the scattered-radiation distribution has been taken into account. Simplified relations valid for long laser pulses and small values of both scattering angle and bunch divergence are also reported. Finally, we apply the results to the cases of backscattering with electron bunches typically produced with both standard radio-frequency-based accelerators and laser-plasma accelerators
A gamma-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each laser pulse. The rate of the gamma-ray yield in the giant dipole resonance region (8
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.