Studies of single-event laser-target interaction for fusion reaction schemes leading to volume ignition are discussed. Conditions were explored where single-event ns-laser pulses give rise to temperatures sufficient for volume ignition. Thus, ignition is possible, particularly if X-ray reabsorption is sufficiently high. Unfortunately, this scheme requires laser pulses with energies above 5 MJ and target densities of compressed DT above 1000 g/cm−3. Both requirements are quite demanding for near term systems. Nevertheless the present state technology and the detailed knowledge about volume ignition at direct drive are a basis. Systems as NIF or LMJ can well confirm these physics-clarified conditions and the technology for large laser systems with sufficient repetition rate and for a drastic reduction of the size and costs is necessary and possible and by physics similar to the known reductions in transistor development.
Compression of plasmas with laser pulses in the 10-kJ range produced densities in the range of 1000 times that of the solid state, where however the temperatures within a few hundred eV were rather low. This induced the fast ignitor scheme for central or peripheral deposition of some 10-kJ ps laser pulses on conventional $n_{\rm s}$-precompressed DT plasma of 3000 times solid-state density. We present results where the ps ignition is avoided and only a single-event conventional compression is used. Following our computations of volume ignition and the excellent agreement with measured highest fusion gains of volume compression, we found conditions where compression to 5000 times that of the solid state and by using laser pulses of 10 MJ produce volume ignition with temperatures between 400 and 800 eV only for high-gain volume ignition.
Computations are to be performed using the laser driven inertial fusion energy option based
on volume ignition with the natural adiabatic self-similarity compression and expansion hydrodynamics
[1]. The numerical work includes the establishing of a multi-branch reaction code to be used for
simultaneous fusion reactions of D-D, D-T D-He3 and mutual nuclear reaction products. This will
permit the studies of neutron lean reactions as well as tritium-rich cases. The D-T reactions will stress
the recent new results on one step laser fusion [2] as an alternative to the two-step fast ignitor scheme
whose difficulties with new physics phenomena at petawatt laser interaction are more and more evident
[3]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.