Immunomodulatory (IM) metabolic reprogramming in macrophages (Mϕs) is fundamental to immune function. However, limited information is available for human Mϕs, particularly in response plasticity, which is critical to understanding the variable efficacy of immunotherapies in cancer patients. We carried out an in-depth analysis by combining multiplex stable isotope-resolved metabolomics with reversed phase protein array to map the dynamic changes of the IM metabolic network and key protein regulators in four human donors’ Mϕs in response to differential polarization and M1 repolarizer β-glucan (whole glucan particles [WGPs]). These responses were compared with those of WGP-treated ex vivo organotypic tissue cultures (OTCs) of human non-small cell lung cancer. We found consistently enhanced tryptophan catabolism with blocked NAD+ and UTP synthesis in M1-type Mϕs (M1-Mϕs), which was associated with immune activation evidenced by increased release of IL-1β/CXCL10/IFN-γ/TNF-α and reduced phagocytosis. In M2a-Mϕs, WGP treatment of M2a-Mϕs robustly increased glucose utilization via the glycolysis/oxidative branch of the pentose phosphate pathway while enhancing UDP-N-acetyl-glucosamine turnover and glutamine-fueled gluconeogenesis, which was accompanied by the release of proinflammatory IL-1β/TNF-α to above M1-Mϕ’s levels, anti-inflammatory IL-10 to above M2a-Mϕ’s levels, and attenuated phagocytosis. These IM metabolic responses could underlie the opposing effects of WGP, i.e., reverting M2- to M1-type immune functions but also boosting anti-inflammation. Variable reprogrammed Krebs cycle and glutamine-fueled synthesis of UTP in WGP-treated OTCs of human non-small cell lung cancer were observed, reflecting variable M1 repolarization of tumor-associated Mϕs. This was supported by correlation with IL-1β/TNF-α release and compromised tumor status, making patient-derived OTCs unique models for studying variable immunotherapeutic efficacy in cancer patients.
In recent years, United States federal funding agencies, including the National Institutes of Health (NIH) and the National Science Foundation (NSF), have implemented public access policies to make research supported by funding from these federal agencies freely available to the public. Enforcement is primarily through annual and final reports submitted to these funding agencies, where all peer-reviewed publications must be registered through the appropriate mechanism as required by the specific federal funding agency. Unreported and/or incorrectly reported papers can result in delayed acceptance of annual and final reports and even funding delays for current and new research grants. So, it’s important to make sure every peer-reviewed publication is reported properly and in a timely manner. For large collaborative research efforts, the tracking and proper registration of peer-reviewed publications along with generation of accurate annual and final reports can create a large administrative burden. With large collaborative teams, it is easy for these administrative tasks to be overlooked, forgotten, or lost in the shuffle. In order to help with this reporting burden, we have developed the Academic Tracker software package, implemented in the Python 3 programming language and supporting Linux, Windows, and Mac operating systems. Academic Tracker helps with publication tracking and reporting by comprehensively searching major peer-reviewed publication tracking web portals, including PubMed, Crossref, ORCID, and Google Scholar, given a list of authors. Academic Tracker provides highly customizable reporting templates so information about the resulting publications is easily transformed into appropriate formats for tracking and reporting purposes. The source code and extensive documentation is hosted on GitHub (https://moseleybioinformaticslab.github.io/academic_tracker/) and is also available on the Python Package Index (https://pypi.org/project/academic_tracker) for easy installation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.