As telehealth applications emerge, the need for accurate and reliable biosignal quality indices has increased. One typical modality used in remote patient monitoring is the electrocardiogram (ECG), which is inherently susceptible to several different noise sources, including environmental (e.g., powerline interference), experimental (e.g., movement artifacts), and physiological (e.g., muscle and breathing artifacts). Accurate measurement of ECG quality can allow for automated decision support systems to make intelligent decisions about patient conditions. This is particularly true for in-home monitoring applications, where the patient is mobile and the ECG signal can be severely corrupted by movement artifacts. In this paper, we propose an innovative ECG quality index based on the so-called modulation spectral signal representation. The representation quantifies the rate of change of ECG spectral components, which are shown to be different from the rate of change of typical ECG noise sources. The proposed modulation spectral-based quality index, MS-QI, was tested on 1) synthetic ECG signals corrupted by varying levels of noise, 2) single-lead recorded data using the Hexoskin garment during three activity levels (sitting, walking, running), 3) 12-lead recorded data using conventional ECG machines (Computing in Cardiology 2011 dataset), and 4) two-lead ambulatory ECG recorded from arrhythmia patients (MIT-BIH Arrhythmia Database). Experimental results showed the proposed index outperforming two conventional benchmark quality measures, particularly in the scenarios involving recorded data in real-world environments.
The novel coronavirus SARS-CoV-2 that causes the disease COVID-19 has forced us to go into our homes and limit our physical interactions with others. Economies around the world have come to a halt, with non-essential businesses being forced to close in order to prevent further propagation of the virus. Developing countries are having more difficulties due to their lack of access to diagnostic resources. In this study, we present an approach for detecting COVID-19 infections exclusively on the basis of self-reported symptoms. Such an approach is of great interest because it is relatively inexpensive and easy to deploy at either an individual or population scale. Our best model delivers a sensitivity score of 0.752, a specificity score of 0.609, and an area under the curve for the receiver operating characteristic of 0.728. These are promising results that justify continuing research efforts towards a machine learning test for detecting COVID-19.
<p>The increased level of air pollution in big cities has become a major concern for several organizations and authorities because of the risk it represents to human health. In this context, the technology has become a very useful tool in the contamination monitoring and the possible mitigation of its impact. Particularly, there are different proposals using the internet of things (IoT) paradigm that use interconnected sensors in order to measure different pollutants. In this paper, we develop a systematic mapping study defined by a five-step methodology to identify and analyze the research status in terms of IoT-based air pollution monitoring systems for smart cities. The study includes 55 proposals, some of which have been implemented in a real environment. We analyze and compare these proposals in terms of different parameters defined in the mapping and highlight some challenges for air quality monitoring systems implementation into the smart city context.</p>
Emotion care for human well-being is important for all ages. In this paper, we propose an emotion care system based on big data analysis for autism disorder patient training, where emotion is detected in terms of facial expression. The expression can be captured through a camera as well as Internet of Things (IoT)-enabled devices. The system works with deep learning techniques on emotional big data to extract emotional features and recognize six kinds of facial expressions in real-time and offline. A convolutional neural network (CNN) model based on MobileNet V1 structure is trained with two emotional datasets, FER-2013 dataset and a new proposed dataset named MCFER. The experiments on three strategies showed that the proposed system with deep learning model obtained an accuracy of 95.89%. The system can also detect and track multiple faces as well as recognize facial expressions with high performance on mobile devices with a speed of up to 12 frames per second.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.