Context. In the classical picture, electron-capture supernovae and the accretion-induced collapse of oxygen-neon white dwarfs undergo an oxygen deflagration phase before gravitational collapse produces a neutron star. These types of core collapse events are postulated to explain several astronomical phenomena. In this work, the oxygen deflagration phase is simulated for the first time using multidimensional hydrodynamics. Aims. By simulating the oxygen deflagration with multidimensional hydrodynamics and a level-set-based flame approach, new insights can be gained into the explosive deaths of 8−10 M stars and oxygen-neon white dwarfs that accrete material from a binary companion star. The main aim is to determine whether these events are thermonuclear or core-collapse supernova explosions, and hence whether neutron stars are formed by such phenomena. Methods. The oxygen deflagration is simulated in oxygen-neon cores with three different central ignition densities. The intermediate density case is perhaps the most realistic, being based on recent nuclear physics calculations and 1D stellar models. The 3D hydrodynamic simulations presented in this work begin from a centrally confined flame structure using a level-set-based flame approach and are performed in 256 3 and 512 3 numerical resolutions. Results. In the simulations with intermediate and low ignition density, the cores do not appear to collapse into neutron stars. Instead, almost a solar mass of material becomes unbound from the cores, leaving bound remnants. These simulations represent the case in which semiconvective mixing during the electron-capture phase preceding the deflagration is inefficient. The masses of the bound remnants double when Coulomb corrections are included in the equation of state, however they still do not exceed the effective Chandrasekhar mass and, hence, would not collapse into neutron stars. The simulations with the highest ignition density (log 10 ρ c = 10.3), representing the case where semiconvective mixing is very efficient, show clear signs that the core will collapse into a neutron star.
Context. The identity of the progenitor systems of Type Ia supernovae (SNe Ia) is still uncertain. In the single-degenerate scenario, the interaction between the supernova blast wave and the outer layers of a main sequence companion star strips off hydrogen-rich material which is then mixed into the ejecta. Strong contamination of the supernova ejecta with stripped material could lead to a conflict with observations of SNe Ia. This constrains the single-degenerate progenitor model. Aims. In this work, our previous simulations based on simplified progenitor donor stars have been updated by adopting more realistic progenitor-system models that result from fully detailed, state-of-the-art binary evolution calculations. Methods. We use Eggleton's stellar evolution code including the optically thick accretion wind model and taking into account the possibility of the effects of accretion disk instabilities to obtain realistic models of companion stars for different progenitor systems. The impact of the supernova blast wave on these companion stars is followed in three-dimensional hydrodynamic simulations employing the smoothed particle hydrodynamics code GADGET3. Results. For a suite of main sequence companions, we find that the mass of the material stripped from the companions range from 0.11 M to 0.18 M . The kick velocity delivered by the impact is between 51 km s −1 and 105 km s −1 . We find that the stripped mass and kick velocity depend on the ratio of the orbital separation to the radius of a companion, a f /R. They can be fitted in good approximation by a power law for a given companion model. However, we do not find a single power law relation holding for different companion models. This implies that the structure of the companion star is also important for the amount of stripped material. Conclusions. With more realistic companion star models than those employed in previous studies, our simulations show that the hydrogen masses stripped from companions are inconsistent with the best observational limits ( 0.01 M ) derived from SN Ia nebular spectra. However, a rigorous forward modeling from the results of impact simulations with radiation transfer is required to reliably predict observable signatures of the stripped hydrogen and to conclusively assess the viability of the considered SN Ia progenitor scenario.
Context. Massive stars are predicted to excite internal gravity waves (IGWs) by turbulent core convection and from turbulent pressure fluctuations in their near-surface layers. These IGWs are extremely efficient at transporting angular momentum and chemical species within stellar interiors, but they remain largely unconstrained observationally. Aims. We aim to characterise the photometric detection of IGWs across a large number of O and early-B stars in the Hertzsprung–Russell diagram, and explain the ubiquitous detection of stochastic variability in the photospheres of massive stars. Methods. We combined high-precision time-series photometry from the NASA Transiting Exoplanet Survey Satellite with high-resolution ground-based spectroscopy of 70 stars with spectral types O and B to probe the relationship between the photometric signatures of IGWs and parameters such as spectroscopic mass, luminosity, and macroturbulence. Results. A relationship is found between the location of a star in the spectroscopic Hertzsprung–Russell diagram and the amplitudes and frequencies of stochastic photometric variability in the light curves of massive stars. Furthermore, the properties of the stochastic variability are statistically correlated with macroturbulent velocity broadening in the spectral lines of massive stars. Conclusions. The common ensemble morphology for the stochastic low-frequency variability detected in space photometry and its relationship to macroturbulence is strong evidence for IGWs in massive stars, since these types of waves are unique in providing the dominant tangential velocity field required to explain the observed spectroscopy.
Almost all massive stars explode as supernovae and form a black hole or neutron star. The remnant mass and the impact of the chemical yield on subsequent star formation and galactic evolution strongly depend on the internal physics of the progenitor star, which is currently not well understood. The theoretical uncertainties of stellar interiors accumulate with stellar age, which is particularly pertinent for the blue supergiant phase. Stellar oscillations represent a unique method of probing stellar interiors, yet inference for blue supergiants is hampered by a dearth of observed pulsation modes. Here we report the detection of diverse variability in blue supergiants using the K2 and TESS space missions. The discovery of pulsation modes or an entire spectrum of low-frequency gravity waves in these stars allow us to map the evolution of hot massive stars towards the ends of their lives. Future asteroseismic modelling will provide constraints on ages, core masses, interior mixing, rotation and angular momentum transport. The discovery of variability in blue supergiants is a step towards a data-driven empirical calibration of theoretical evolution models for the most massive stars in the Universe.Stars born with masses larger than approximately eight times the mass of the Sun play a significant role in the evolution of galaxies. They are the chemical factories that produce and expel heavy elements through their wind and when they end their lives as supernovae and form a black hole or neutron star 1-3 . However, the chemical yields that enrich the interstellar medium and the remnant mass strongly depend on the progenitor star's interior properties 4 . The detectable progenitors of supernovae include blue supergiant stars, which are hot massive stars in a shell-hydrogen or core-helium burning stage of stellar evolution. Stellar evolution models of these post-main sequence stars contain by far the largest uncertainties in stellar astrophysics, as observational constraints on interior mixing, rotation and angular momentum transport are missing. These phenomena are further compounded when coupled with mass loss, binarity and magnetic fields 1-3 . Across astrophysics, from star formation to galactic evolution, it is imperative to calibrate theoretical models of massive stars using observations because they determine the evolution of the cosmos.A unique methodology for probing stellar interiors is asteroseismology 5 , which -similarly to seismology of earthquakes -uses oscillations to derive constraints on the structure of stars.The study of stellar interiors of low-mass stars like the Sun has undergone a revolution in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.