The presented work is dedicated to the numerical study of the aerodynamic characteristics of the helicopter rotor. Two approaches to modeling of the rotor are applied: the free wake model developed by the Authors with using steady airfoil characteristics and the Unsteady RANS method based on the Ansys Fluent software. The modes of hovering and horizontal flight in the range of advancing ratio μ = (0-0.45) are considered. The shapes of the rotor wake, the distributions of the normal force coefficient and the fields of inductive velocities for all considered flight modes are calculated. For a particular case with μ = 0.25 there is a comparison with experimental data. The time needed for calculation of the applied methods is estimated. Accuracy of the used methods in the framework of the solved task is analysed with taking into account used models assumptions. It is shown that in the range of μ = (0-0.25) the free wake model provides a fast and reliable calculation of the aerodynamic characteristics of the helicopter rotor. For values of μ > 0.35 it is necessary to take into account the unsteady characteristics of the airfoil.
The paper is focused on numerical modeling of the aerodynamic characteristics of a full-scale coaxial main rotor in hover. The simulation was performed using two approaches of computational fluid dynamics (CFD): the original free wake model (FWM) developed by the authors and the unsteady Reynolds-averaged Navier-Stokes (URANS) equations method based on the Ansys Fluent software. The structure of the rotor vortex wake, flow images, vorticity and induced velocity fields, total and distributed aerodynamic characteristics of the rotor, including the rotor performance and figure of merit diagrams, have been analyzed. A comparison between FWM/URANS based calculations and calculated/experimental data by other authors has been performed. A satisfactory match of these data confirms reliability of used methods when modeling the aerodynamic characteristics of coaxial rotors. The FMW demonstrates a significant advantage in speed and resources intensity when calculating the total aerodynamic characteristics of a coaxial rotor. The URANS method makes it possible to model with significant accuracy the effects associated with the blade vortex interactions and pressure distribution over the blade surface. Finally, conclusions about most effectiveness of joint application of considered methods in solving complex problems of coaxial rotor aerodynamics has been made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.