Aims The flow of electric current in the root-soil system relates to the pathways of water and solutes, its characterization provides information on the root architecture and functioning. We developed a current source density approach with the goal of non-invasively image the current pathways in the root-soil system. Methods A current flow is applied from the plant stem to the soil, the proposed geoelectrical approach images the resulting distribution and intensity of the electric current in the root-soil system. The numerical inversion procedure underlying the approach was tested in numer
With the recent interest in the Laplace-Fourier domain full waveform inversion, we have developed new heterogeneous 3D fourth-and second-order staggered-grid finite-difference schemes for modeling seismic wave propagation in the LaplaceFourier domain. Our approach is based on the integrointerpolation technique for the velocity-stress formulation in the Cartesian coordinate system. Five averaging elastic coefficients and three averaging densities are necessary to describe the heterogeneous medium, with harmonic averaging of the bulk and shear moduli, and arithmetic averaging of density. In the fourth-order approximation, we improved the accuracy of the scheme using a combination of integral identities for two elementary volumes -"small" and "large" around spatial gridpoints where the wave variables are defined. Two solution approaches are provided, both of which are solved with iterative Krylov methods. In the first approach, the stress variables are eliminated and a linear system for the velocity components is solved. In the second approach, we worked directly with the first-order system of velocity and stress variables. This reduced the computer memory required to store the complex matrix, along with reducing (by 30%) the number of arithmetic operations needed for the solution compared to the fourth-order scheme for velocity only. Numerical examples show that our finite-difference formulations for elastic wavefield simulations can achieve more accurate solutions with fewer grid points than those from previously published second and fourth-order frequency-domain schemes. We applied our simulator to the investigation of wavefields from the SEG/EAGE model in the Laplace-Fourier domain. The calculation is sensitive to the heterogeneity of the medium and capable of describing the structures of complex objects. Our technique can also be extended to 3D elastic modeling within the time domain.
SUMMARY
We introduce a new approach for locating earthquakes using arrival times derived from waveforms. The most costly computational step of the algorithm scales as the number of stations in the active seismographic network. In this approach, a variation on existing grid search methods, a series of full waveform simulations are conducted for all receiver locations, with sources positioned successively at each station. The traveltime field over the region of interest is calculated by applying a phase picking algorithm to the numerical wavefields produced from each simulation. An event is located by subtracting the stored traveltime field from the arrival time at each station. This provides a shifted and time-reversed traveltime field for each station. The shifted and time-reversed fields all approach the origin time of the event at the source location. The mean or median value at the source location thus approximates the event origin time. Measures of dispersion about this mean or median time at each grid point, such as the sample standard error and the average deviation, are minimized at the correct source position. Uncertainty in the event position is provided by the contours of standard error defined over the grid. An application of this technique to a synthetic data set indicates that the approach provides stable locations even when the traveltimes are contaminated by additive random noise containing a significant number of outliers and velocity model errors. It is found that the waveform-based method out-performs one based upon the eikonal equation for a velocity model with rapid spatial variations in properties due to layering. A comparison with conventional location algorithms in both a laboratory and field setting demonstrates that the technique performs at least as well as existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.