Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Lithium silicate containing eutectic orthosilicate mixtures developed by a solid-state route displayed excellent characteristics as carbon dioxide absorbents at elevated temperature, showing absorption capacity of 256 mg g −1 . Incorporation of second-phase materials was investigated as a strategy to enhance the stability of the absorbent materials against agglomeration and sintering during powder processing and high-temperature cyclic absorption/desorption loading. Yttrium oxide, gadolinium oxide, and lanthanum phosphate were added as second phases to the absorbent. It was found that when the composites were rich in absorbents (10:1 and 20:1 absorbent/second phase), the absorption performance was hardly influenced by the type of the secondphase material present. Yttrium oxide or gadolinium oxide additions in large quantities were found to enhance the absorption capacity of the orthosilicate phase. The 2:1 sample containing yttrium oxide gave absorption capacity of 315 mg g −1 of orthosilicate absorbent present in the composite sample. On the basis of the structural and morphological studies, we believe that the nonreactive second-phase components formed a virtual shell against the segregation of absorbent phase, thereby helping to improve their absorption performance. Cyclic studies have supported the superior stability and performance of such composite absorbent materials.
Germanium-incorporated lithium silicate nanostructures with exceptional carbon dioxide absorption kinetics and capacity in the temperature range of 150–700 °C.
The lithium silicate nanorods derived by a microwave sol gel process display extremely fast CO2 absorption rates as well as remarkable durability for prolonged application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.