The well-known neural mass model described by Lopes da Silva et al. (1976) and Zetterberg et al. (1978) is fitted to actual EEG data. This is achieved by reformulating the original set of integral equations as a continuous-discrete state space model. The local linearization approach is then used to discretize the state equation and to construct a nonlinear Kalman filter. On this basis, a maximum likelihood procedure is used for estimating the model parameters for several EEG recordings. The analysis of the noise-free differential equations of the estimated models suggests that there are two different types of alpha rhythms: those with a point attractor and others with a limit cycle attractor. These attractors are also found by means of a nonlinear time series analysis of the EEG recordings. We conclude that the Hopf bifurcation described by Zetterberg et al. (1978) is present in actual brain dynamics.
High resolution spectral methods are explored as an alternative to broad band spectral parameters (BBSP) in quantitative EEG analysis. In a previous paper (Valdes et al. 1990b) regression equations ("Developmental surfaces") were introduced to characterize the age-frequency distribution of the mean and standard deviation of the log spectral EEG power in a normative sample. These normative surfaces allow the calculation of z transformed spectra for all derivations of the 10/20 system and z maps for each frequency. Clinical material is presented that illustrates how these procedures may pinpoint frequencies of abnormal brain activity and their topographic distribution, avoiding the frequency and spatial "smearing" that may occur using BBSP. The increased diagnostic accuracy of high resolution spectral methods is demonstrated by means of receiver operator characteristic (ROC) curve analysis. Procedures are introduced to avoid type I error inflation due to the use of more variables in this type of procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.