We have applied the computer simulation method of molecular dynamics (MD) to a realistic representation of a lipid bilayer. which serves as a model for a biological membrane. The bilayer consists of 2 X 16 decanoate molecules and is periodic in two dimensions. Interactions include Lennard-Jones, dihedral, and bond angle potentials while bond lengths are constrained. Head groups are confined near the bilayer surfaces by harmonic forces representing their interaction with the water layer. After equilibration, a simulation extending over 80 ps at 300 K was carried out for a head group surface area of 25 A'. Experimental order parameters are perfectly reproduced. A highly interesting cooperative tilt of the molecules, persisting over several tens of picoseconds, is observed. The molecular plane is strongly correlated with the plane of tilt. The popular kink model for the hydrocarbon chain order and dynamics is not supported. In view of the observed extended spatial correlation, a simulation was also carried out for a bilayer consisting of 2 X 64 decanoate molecules.
The conformational entropy of the disordered hydrocarbon chains in a bilayer membrane is calculated from a molecular dynamics simulation. We find that one chain in the mean field of the others is very well described by a trans-gauehe model with adjacent gauches of opposite sign forbidden. The effective gauche energy depends, however, on the density of chains and may for realistic densities be between 4"5 and 5-7 kJ mo1-1. This gives a conformational entropy of the disordered phase close to the gel-liquid crystalline phase transition temperature that is in rough agreement with the experimental phase transition entropy.
Many different analytical procedures for fatty acid analysis of infant formulae and human milk are described. The objective was to study possible pitfalls in the use of different acid-catalyzed procedures compared to a base-catalyzed procedure based on sodium-methoxide in methanol. The influence of the different methods on the relative fatty acid composition (wt% of total fatty acids) and the total fatty acid recovery rate (expressed as % of total lipids) was studied in two experimental LCP-containing formulae and a human milk sample. MeOH/HCl-procedures were found to result in an incomplete transesterification of triglycerides, if an additional nonpolar solvent like toluene or hexane is not added and a water-free preparation is not guaranteed. In infant formulae the low transesterification of triglycerides (up to only 37%) could result in an 100%-overestimation of the relative amount of LCP, if these fatty acids primarily derive from phospholipids. This is the case in infant formulae containing egg lipids as raw materials. In formula containing fish oils and in human milk the efficacy of esterification results in incorrect absolute amounts of fatty acids, but has no remarkable effect on the relative fatty acid distribution. This is due to the fact that in these samples LCP are primarily bound to triglycerides. Furthermore, in formulae based on butterfat the derivatization procedure should be designed in such a way that losses of short-chain fatty acids due to evaporation steps can be avoided. The procedure based on sodium methoxide was found to result in a satisfactory (about 90%) conversion of formula lipids and a reliable content of all individual fatty acids. Due to a possibly high amount of free fatty acids in human milk, which are not methylated by sodium-methoxide, caution is expressed about the use of this reagent for fatty acid analysis of mothers milk. It is concluded that accurate fatty acid analysis of infant formulae and human milk requires a careful and quantitative derivatization of both polar and nonpolar lipid classes. Sodium methoxide seems to be a reliable and time-saving method for routine fatty acid analysis of infant formulae, which should be validated by interlaboratory comparison. Anhydrous procedures based on methanolic hydrogen chloride including an additional nonpolar solvent are also suitable for infant formulae but seem to be preferable for human milk samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.