The recent discovery of tunable Dzyaloshinskii-Moriya interactions in layered magnetic materials with perpendicular magnetic anisotropy makes them promising candidates for stabilization and manipulation of skyrmions at elevated temperatures. In this article, we use Monte Carlo simulations to investigate the robustness of skyrmions in these materials against thermal fluctuations and finite-size effects. We find that in confined geometries and at finite temperatures skyrmions are present in a large part of the phase diagram. Moreover, we find that the confined geometry favors the skyrmion over the spiral phase when compared to infinitely large systems. Upon tuning the magnetic field through the skyrmion phase, the system undergoes a cascade of transitions in the magnetic structure through states of different number of skyrmions, elongated and half-skyrmions, and spiral states. We consider how quantum and thermal fluctuations lift the degeneracies that occur at these transitions, and find that states with more skyrmions are typically favored by fluctuations over states with less skyrmions. Finally, we comment on electrical detection of the various phases through the topological and anomalous Hall effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.