Synthetic suburethral slings have recently become popular despite the risk of erosion commonly associated with synthetic implants. Some of these materials seem to have unexpectedly low erosion rates. Based on the hypothesis that erosion is due, in part, to biomechanical properties, we undertook an in vitro study. The biomechanical properties of eight non-resorbable synthetic implant materials, stiffness (slope, N/mm) and peak load (N) were determined from load vs. displacement curves. Open-weave Prolene mesh showed unique biomechanical properties compared to other tested materials. The tension- free vaginal tape had the lowest initial stiffness (0.23 N/mm), i.e. low resistance to deformation at forces below the elastic limit, whereas the stiffest implant tested, a nylon tape, reached 6.83 N/mm. We concluded that the TVT and other wide-weave Prolene tapes have unique biomechanical characteristics. These properties may be at least partly responsible for the apparent clinical success of the implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.